Citation: |
[1] |
T. Alarcón, H. M. Byrne and P. K. Maini, A multiple scale model for tumor growth, Multiscale Modeling and Simulation, 3 (2005), 440-475.doi: 10.1137/040603760. |
[2] |
T. Alarcón and K. M. Page, Mathematical models of the VEGF receptor and its role in cancer therapy, Journal of The Royal Society Interface, 4 (2007), 283-304.doi: 10.1098/rsif.2006.0170. |
[3] |
B. B. Aldridge, J. M. Burke, D. A. Lauffenburger and P. K. Sorger, Physicochemical modelling of cell signalling pathways, Nature Cell Biology, 8 (2006), 1195-1203.doi: 10.1038/ncb1497. |
[4] |
R. Alves, F. Antunes and A. Salvador, Tools for kinetic modeling of biochemical networks, Nature Biotechnology, 24 (2006), 667-672.doi: 10.1038/nbt0606-667. |
[5] |
A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bulletin of Mathematical Biology, 60 (1998), 857-899.doi: 10.1006/bulm.1998.0042. |
[6] |
R. P. Araujo and D. L. S McElwain, A history of the study of solid tumour growth: the contribution of mathematical modelling, Bulletin of Mathematical Biology, 66 (2004) 1039-1091.doi: 10.1016/j.bulm.2003.11.002. |
[7] |
U. S. Bhalla, R. Iyengar and others, Emergent properties of networks of biological signaling pathways, Science, 283 (1999), 381-387.doi: 10.1126/science.283.5400.381. |
[8] |
K. Bartha and H. Rieger, Vascular network remodeling via vessel cooption, regression and growth in tumors, Journal of Theoretical Biology, 241 (2006), 903-918.doi: 10.1016/j.jtbi.2006.01.022. |
[9] |
F. Billy, B. Ribba, O. Saut, H. Morre-Trouilhet, T. Colin, D. Bresch, J. P. Boissel, E. Grenier and J. P. Flandrois, A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, Journal of Theoretical Biology, 260 (2009), 545-562.doi: 10.1016/j.jtbi.2009.06.026. |
[10] |
J. P. Boissel, B. Ribba, E. Grenier, G. Chapuisat and M-A. Dronne, Modelling methodology in physiopathology, Progress in Biophysics and Molecular Biology, 97 (2008), 28-39.doi: 10.1016/j.pbiomolbio.2007.10.005. |
[11] |
H. M. Byrne and M. A. J. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, 130 (1995), 151-181.doi: 10.1016/0025-5564(94)00117-3. |
[12] |
P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases, Nature, 407 (2000), 249-257.doi: 10.1038/35025220. |
[13] |
S. Cebe-Suarez, A. Zehnder-Fjällman and K. Ballmer-Hofer, The role of VEGF receptors in angiogenesis; complex partnerships, Cellular and Molecular Life Sciences, 63 (2006), 601-615.doi: 10.1007/s00018-005-5426-3. |
[14] |
A. Citri and Y. Yarden, EGF-ERBB signalling: Towards the systems level, Nature Reviews Molecular Cell Biology, 7 (2006), 505-516.doi: 10.1038/nrm1962. |
[15] |
M. J. Cross, J. Dixelius, T. Matsumoto and L. Claesson-Welsh, VEGF-receptor signal transduction, Trends in Biochemical Sciences, 28 (2003), 488-494.doi: 10.1016/S0968-0004(03)00193-2. |
[16] |
A. Emde, C. R. Pradeep, D. A. Ferraro, N. Ben-Chetrit, M. Sela, B. Ribba, Z. Kam and Y. Yarden, Combining epitope-distinct antibodies to HER2: cooperative inhibitory effects on invasive growth, Oncogene, 30 (2010), 1631-1642.doi: 10.1038/onc.2010.547. |
[17] |
S. Faivre, G. Demetri, W. Sargent and E. Raymond, Molecular basis for sunitinib efficacy and future clinical development, Nature Reviews Drug Discovery, 6 (2007), 734-745.doi: 10.1038/nrd2380. |
[18] |
N. Ferrara, VEGF and the quest for tumour angiogenesis factors, Nature Reviews Cancer, 2 (2002), 795-803.doi: 10.1038/nrc909. |
[19] |
N. Ferrara, Vascular endothelial growth factor: basic science and clinical progress, Endocrine Reviews, 25 (2004), 581-611.doi: 10.1210/er.2003-0027. |
[20] |
N. Ferrara, K. J. Hillan and W. Novotny, Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy, Biochemical and Biophysical Research Communications, 333 (2005), 326-335.doi: 10.1016/j.bbrc.2005.05.132. |
[21] |
J. Folkman, Tumor angiogenesis factor, Cancer Research, 34 (1974), 2109. |
[22] |
J. Folkman, New perspectives in clinical oncology from angiogenesis research, European Journal of Cancer (Oxford, England: 1990), 32 (1996), 2534. |
[23] |
F. M. Gabhann and A. S. Popel, Systems biology of vascular endothelial growth factors, Microcirculation, 15 (2008), 715-738.doi: 10.1080/10739680802095964. |
[24] |
G. Gasparini, R. Longo, M. Fanelli and B. A. Teicher, Combination of antiangiogenic therapy with other anticancer therapies: results, challenges, and open questions, Journal of Clinical Oncology, 23 (2005), 1295-1311.doi: 10.1200/JCO.2005.10.022. |
[25] |
H. P. Gerber, A. McMurtrey, J. Kowalski, M. Yan, B. A. Keyt, V. Dixit and N. Ferrara, Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3-kinase/Akt signal transduction pathway, Journal of Biological Chemistry, 273 (1998), 30336-30343.doi: 10.1074/jbc.273.46.30336. |
[26] |
F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model, Physical Review Letters, 69 (1992), 2013-2016.doi: 10.1103/PhysRevLett.69.2013. |
[27] |
M. Hatakeyama, S. Kimura, T. Naka, T. Kawasaki, N. Yumoto, M. Ichikawa, J. H. Kim, K. Saito, M. Saeki, M. Shirouzu, S. Yokoyama and A. Konagaya, A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling, Biochemical Journal, 373 (2003), 451-463.doi: 10.1042/BJ20021824. |
[28] |
B. S. Hendriks, F. Hua and J. R. Chabot, Analysis of mechanistic pathway models in drug discovery: p38 pathway, Biotechnology Progress, 24 (2008), 96-109.doi: 10.1021/bp070084g. |
[29] |
C. Y. Huang and J. E. Ferrell, Ultrasensitivity in the mitogen-activated protein kinase cascade, Proceedings of the National Academy of Sciences, 93 (1996), 10078-10083.doi: 10.1073/pnas.93.19.10078. |
[30] |
C. Huang, K. Jacobson and M. D. Schaller, MAP kinases and cell migration, Journal of Cell Science, 117 (2004), 4619-4628.doi: 10.1242/jcs.01481. |
[31] |
R. K Jain, Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy, Nature Medicine, 7 (2001), 987-989.doi: 10.1038/nm0901-987. |
[32] |
R. K Jain, Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy, Science, 307 (2005), 58-62.doi: 10.1126/science.1104819. |
[33] |
H. Kitano, Computational systems biology, Nature, 420 (2002), 206-210.doi: 10.1038/nature01254. |
[34] |
H. Kitano, Cancer robustness: tumour tactics, Nature, 426 (2003), 125-125.doi: 10.1038/426125a. |
[35] |
H. Kitano, A. Funahashi, Y. Matsuoka and K. Oda, Using process diagrams for the graphical representation of biological networks, Nature Biotechnology, 23 (2005), 961-966.doi: 10.1038/nbt1111. |
[36] |
M. Kohandel, M. Kardar, M. Milosevic and S. Sivaloganathan, Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies, Physics in Medicine and Biology, 52 (2007), 3665-3677.doi: 10.1088/0031-9155/52/13/001. |
[37] |
B. N. Kholodenko, O. V. Demin, G. Moehren and J. B. Hoek, Quantification of short term signaling by the epidermal growth factor receptor, Journal of Biological Chemistry, 274 (1999), 30169-30181.doi: 10.1074/jbc.274.42.30169. |
[38] |
B. N. Kholodenko, Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades, European Journal of Biochemistry, 267 (2001), 1583-1588.doi: 10.1046/j.1432-1327.2000.01197.x. |
[39] |
L. Lamalice, F. Le Boeuf and J. Huot, Endothelial cell migration during angiogenesis, Circulation Research, 100 (2007), 782-794.doi: 10.1161/01.RES.0000259593.07661.1e. |
[40] |
D. S. Lee, H. Rieger and K. Bartha, Flow correlated percolation during vascular remodeling in growing tumors, Physical Review Letters, 96 (2006), 58104.doi: 10.1103/PhysRevLett.96.058104. |
[41] |
J. Ma and D. J. Waxman, Combination of antiangiogenesis with chemotherapy for more effective cancer treatment, Molecular Cancer Therapeutics, 7 (2008), 3670-3684.doi: 10.1158/1535-7163.MCT-08-0715. |
[42] |
N. V. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumor-induced angiogenesis, Journal of Mathematical Biology, 49 (2004), 111-187. |
[43] |
D. B. Mendel, A. D. Laird, X. Xin, S. G. Louie, J. G. Christensen, G. Li, R. E. Schreck, T. J. Abrams, T. J. Ngai, L. B. Lee and others, In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors, Clinical Cancer Research, 9 (2003), 327-337. |
[44] |
L. Napione, S. Pavan, A. Veglio, A. Picco, G. Boffetta, A. Celani, G. Seano, L. Primo, A. Gamba and F. Bussolino, Unraveling the influence of endothelial cell density on VEGF-A signaling, Blood (2012), 5599-5607.doi: 10.1182/blood-2011-11-390666. |
[45] |
N. Normanno, A. Morabito, A. De Luca, M. C. Piccirillo, M. Gallo, M. R. Maiello and F. Perrone, Target-based therapies in breast cancer: current status and future perspectives, Endocrine-related cancer, 16 (2009), 675-702.doi: 10.1677/ERC-08-0208. |
[46] |
N. Le Novere, A. Finney, M. Hucka, U. S. Bhalla, F. Campagne, J. Collado-Vides, E. J. Crampin, M. Halstead, E. Klipp, P. Mendes and others, Minimum information requested in the annotation of biochemical models (MIRIAM), Nature Biotechnology, 23 (2005), 1509-1515.doi: 10.1038/nbt1156. |
[47] |
A. K. Olsson, A. Dimberg, J. Kreuger and L. Claesson-Welsh, VEGF receptor signalling-in control of vascular function, Nat. Rev. Mol. Cell. Biol., 7 (2006), 357-371.doi: 10.1038/nrm1911. |
[48] |
T. M Pawlik and K. Keyomarsi, Role of cell cycle in mediating sensitivity to radiotherapy, International Journal of Radiation Oncology, Biology, Physics, 59 (2004), 928-942.doi: 10.1016/j.ijrobp.2004.03.005. |
[49] |
N. Rahimi, Vascular endothelial growth factor receptors: molecular mechanisms of activation and therapeutic potentials, Experimental Eye Research, 83 (2006), 1005-1016.doi: 10.1016/j.exer.2006.03.019. |
[50] |
B. Ribba, O. Saut, T. Colin, D. Bresch, E. Grenier and J. P. Boissel, A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents, Journal of Theoretical Biology, 243 (2006), 532-541.doi: 10.1016/j.jtbi.2006.07.013. |
[51] |
B. Ribba, B. You, M. Tod, P. Girard, B. Tranchand, V. Trillet-Lenoir and G. Freyer, Chemotherapy may be delivered based on an integrated view of tumour dynamics, IET Systems Biology, 3 (2009), 180-190.doi: 10.1049/iet-syb.2008.0104. |
[52] |
B. Ribba, T. Colin and S. Schnell, A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies, Theoretical Biology and Medical Modelling, 3 (2006).doi: 10.1186/1742-4682-3-7. |
[53] |
S. Sanga, J. P. Sinek, H. B. Frieboes, M. Ferrari, J. P. Fruehauf and V. Cristini, Mathematical modeling of cancer progression and response to chemotherapy, Expert review of anticancer therapy, 6 (2006), 1361-1376.doi: 10.1586/14737140.6.10.1361. |
[54] |
B. Schoeberl, C. Eichler-Jonsson, E. D. Gilles and G. Muller, Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors, Nature biotechnology, 20 (2002), 370-375.doi: 10.1038/nbt0402-370. |
[55] |
M. Scianna, L. Munaron and L. Preziosi, A multiscale hybrid approach for vasculogenesis and related potential blocking therapies, Progress in Biophysics and Molecular Biology, 106 (2011), 450-462.doi: 10.1016/j.pbiomolbio.2011.01.004. |
[56] |
S. Senan and E. F. Smit, Design of clinical trials of radiation combined with antiangiogenic therapy, The Oncologist, 12 (2007), 465-477.doi: 10.1634/theoncologist.12-4-465. |
[57] |
M. Shibuya, Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis., Journal of biochemistry and molecular biology, 39 (2006), 469-478.doi: 10.5483/BMBRep.2006.39.5.469. |
[58] |
M. Shibuya and L. Claesson-Welsh, Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis, Experimental cell research, 312 (2006), 549-560.doi: 10.1016/j.yexcr.2005.11.012. |
[59] |
M. Simeoni, P. Magni, C. Cammia, G. De Nicolao, V. Croci, E. Pesenti, M. Germani, I. Poggesi and M. Rocchetti, Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents, Cancer Research, 64 (2004), 1094-1101.doi: 10.1158/0008-5472.CAN-03-2524. |
[60] |
H. Takahashi and M. Shibuya, The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions, Clinical Science, 109 (2005), 227-241.doi: 10.1042/CS20040370. |
[61] |
R. T. Tong, Y. Boucher, S. V. Kozin, F. Winkler, D. J. Hicklin and R. K. Jain, Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors, Cancer research, 64 (2004), 3731-3736.doi: 10.1158/0008-5472.CAN-04-0074. |
[62] |
F. Valeriote and L. van Putten, Proliferation-dependent cytotoxicity of anticancer agents: a review, Cancer Research, 35 (1975), 2619-2630. |
[63] |
I. Vivanco and C. L. Sawyers, The phosphatidylinositol 3-Kinase AKT pathway in human cancer., Nature Reviews. Cancer, 2 (2002), 489-501.doi: 10.1038/nrc839. |
[64] |
Y. Wang, L. Zhang, J. Sagotsky and T. S. Deisboeck, Simulating non-small cell lung cancer with a multiscale agent-based model, Theoretical Biology and Medical Modelling, 4 (2007), 50.doi: 10.1186/1742-4682-4-50. |
[65] |
Z. Wang, V. Bordas and T. Deisboeck, Identification of Critical Molecular Components in a Multiscale Cancer Model Based on the Integration of Monte Carlo, Resampling, and ANOVA, Frontiers in Computational Physiology And Medicine, 2 (2011) .doi: 10.3389/fphys.2011.00035. |
[66] |
M. Welter, K. Bartha and H. Rieger, Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor, Journal of Theoretical Biology, 250 (2008), 257-280.doi: 10.1016/j.jtbi.2007.09.031. |
[67] |
C. G. Willett, Y. Boucher, F. Di Tomaso, D. G. Duda, L. L. Munn, R. T. Tong, D. C. Chung, D. V. Sahani, S. P. Kalva, S. V. Kozin, and others, Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer, Nature medicine, 10 (2004), 145-147.doi: 10.1038/nm988. |
[68] |
F. Winkler, S. V. Kozin, R. T. Tong, S. S. Chae, M. F. Booth, I. Garkavtsev, L. Xu, D. J. Hicklin, D. Fukumura, E. di Tomaso, L. L. Munn and R. K. Jain , Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation Role of oxygenation, angiopoietin-1, and matrix metalloproteinases, Cancer Cell, 6 (2004), 553-563. |
[69] |
X. Zheng, S. M Wise and V. Cristini, Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method, Bulletin of mathematical biology, 67 (2005), 211-259.doi: 10.1016/j.bulm.2004.08.001. |