Citation: |
[1] |
A. Abakuks, "Optimal Policies for Epidemics," D. Phil. Thesis, Univ. Of Sussex, 1972. |
[2] |
A. Abakuks, An optimal isolation policy for an epidemic, J. Appl. Probability, 10 (1973), 247-262.doi: 10.2307/3212343. |
[3] |
A. Abakuks, Optimal immunization policies for epidemics, Adv. Appl. Probability, 6 (1974), 494-511.doi: 10.2307/1426230. |
[4] |
R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford Science Publications, Oxford, 1991. |
[5] |
H. Behncke, Optimal control of deterministic epidemics, Opt. Control Appl. Methods, 21 (2000), 269-285.doi: 10.1002/oca.678. |
[6] |
M. C. J. Bootsma and N. M. Ferguson, The effect of public health measures on the 1918 influenza pandemic in U.S. cities, PNAS, 104 (2007), 7588-7593.doi: 10.1073/pnas.0611071104. |
[7] |
C. B. Bridges, M. J. Kuehnert and C. B. Hall, Transmission of influenza: Implications for control in health care settings, Clin. Infect. Dis., 37 (2003), 1094-1101. |
[8] |
E. Bryson and Y. Ho, "Applied Optimal Control-Optimization, Estimation, and Control," Taylor & Francis, New York, London, 1975. |
[9] |
F. Carrat, J. Luong and H. Lao, A.-V. Sallé, C. Lajaunie and H. Wackernagel, A 'smallworld-like' model for comparing interventions aimed at preventing and controlling influenza pandemics, BMC Medicine, 4 (2006). |
[10] |
S. Cauchemez, F. Carrat, C. Viboud, A. J. Valleron and P. Y. Boëlle, A Bayesian MCMC approach to study transmission of influenza: Application to household longitudinal data, Stat. Med., 23 (2004), 3469-3487.doi: 10.1002/sim.1912. |
[11] |
G. Chowell, C. E. Ammon, N. W. Hengartner and J. M. Hyman, Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical intervention, J. Theor. Bio., 241 (2005), 193-204.doi: 10.1016/j.jtbi.2005.11.026. |
[12] |
G. Chowell, H. Nishiura and L. M. A. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data, J. R. Soc. Interface, 4 (2006), 155-166.doi: 10.1098/rsif.2006.0161. |
[13] |
D. Clancy, Optimal intervention for epidemic models with general infection and removal rate functions, J. Math. Biol., 39 (1999), 309-331.doi: 10.1007/s002850050193. |
[14] |
B. Cooper, Poxy models and rash decisions, PNAS, 103 (2006), 12221-12222.doi: 10.1073/pnas.0605502103. |
[15] |
J. Dushoff, J. B. Plotkin, S. A. Levin and D. J. D. Earn, Dynamical resonance can account for seasonality of influenza epidemics, PNAS, 101 (2004), 16915-16916.doi: 10.1073/pnas.0407293101. |
[16] |
B. D. Elderd, V. M. Dukic and G. Dwyer, Uncertainty in predictions of diseases spread and public health responses to bioterrorism and emerging diseases, PNAS, 103 (2006), 15639-15697.doi: 10.1073/pnas.0600816103. |
[17] |
N. M. Ferguson, D. A. T. Cummings and C. Fraser, et al., Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448-452.doi: 10.1038/nature04795. |
[18] |
H. P. Geering, "Optimal Control with Engineering Applications," Springer-Verlag, Berlin-Heidelberg, 2007. |
[19] |
R. J. Glass, L. M. Glass and W. E. Beyeler, et al., Targeted social distancing design for pandemic influenza, Emerg. Infect. Dis., 12 (2006), 1671-1681. |
[20] |
E. Hansen and T. Day, Optimal control of epidemics with limited resources, J. Math. Bio., 62 (2011), 423-451.doi: 10.1007/s00285-010-0341-0. |
[21] |
D. Hull, "Optimal Control Theory for Applications," Mechanical Engineering Series, Springer-Verlag, New York, 2003. |
[22] |
E. H. Kaplan, D. L. Craft and L. M. Wein, Emergency response to a smallpox attack: The case for mass vaccination, PNAS, 99 (2002), 10935-10940.doi: 10.1073/pnas.162282799. |
[23] |
F. Lin, K. Muthuraman and M. Lawley, An optimal control theory approach to non-pharmaceutical interventions, BMC Infect. Dis., 10 (2010), 1-13.doi: 10.1186/1471-2334-10-32. |
[24] |
M. Lipsitch, T. Cohen and B. Cooper, et al., Transmission dynamics of Severe Acute Respiratory Syndrome, Science, 300 (2003), 1966-1970.doi: 10.1126/science.1086616. |
[25] |
I. M. Longini, M. E. Halloran and A. Nizam, et al., Containing pandemic influenza with antiviral agents, Am. J. Epidemiol., 159 (2004), 623-633.doi: 10.1093/aje/kwh092. |
[26] |
I. M. Longini, A. Nizam and S. Xu, et al., Containing pandemic influenza at the source, Science, 309 (2005), 1083-1087.doi: 10.1126/science.1115717. |
[27] |
H. Markel, A. M. Stern and J. A. Navarro, et al., Nonpharmaceutical influenza mitigation strategies, US communities, 1918-1920 pandemic, Emerg. Infect. Dis., 12 (2006), 1961-1964.doi: 10.3201/eid1212.060506. |
[28] |
C. E. Mills, J. M. Robins and M. Lipsitch, Transmissibility of 1918 pandemic influenza, Nature, 432 (2004), 904-906.doi: 10.1038/nature03063. |
[29] |
R. Morton and K. H. Wickwire, On the optimal control of a deterministic epidemic, Adv. Appl. Probability, 6 (1974), 622-635.doi: 10.2307/1426183. |
[30] |
S. Riley, C. Fraser and C. A. Donnelly, et al., Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health intervention, Science, 300 (2003), 1961-1966.doi: 10.1126/science.1086478. |
[31] |
S. Riley and N. M. Ferguson, Smallpox transmission and control: Spatial dynamics in Great Britain, PNAS, 103 (2007), 12637-12642.doi: 10.1073/pnas.0510873103. |
[32] |
S. P. Sethi and P. W. Staats, Optimal control of some simple deterministic epidemic models, J. Oper. Res. Soc., 29 (1978), 129-136.doi: 10.2307/3009792. |
[33] |
S. P. Sethi, Optimal quarantine programmes for controlling an epidemic spread, J. Oper. Res. Soc., 29 (1978), 265-268.doi: 10.2307/3009454. |
[34] |
T. Wai, G. Turinici and A. Danchin, A double epidemic model for the SARS propagation, BMC Infect. Dis., 3 (2003), 1-16. |
[35] |
H. J. Wearing, P. Rohani and M. J. Keeling, Appropriate models for the management of infectious diseases, PLoS Medicine, 2 (2005), 1532-1540.doi: 10.1371/journal.pmed.0020174. |
[36] |
R. J. Webby and R. G. Webster, Are we ready for pandemic influenza, Science, 302 (2003), 1519-1522.doi: 10.1126/science.1090350. |
[37] |
K. H. Wickwire, Optimal isolation policies for deterministic and stochastic epidemics, Math. Biosci., 26 (1975), 325-346.doi: 10.1016/0025-5564(75)90020-6. |
[38] |
J. T. Wu, S. Riley and C. Fraser, et al., Reducing the impact of the next influenza pandemic using household-based public health interventions, PLoS Medicine, 3 (2006), 1532-1540.doi: 10.1371/journal.pmed.0030361. |