• Previous Article
    Genome characterization through dichotomic classes: An analysis of the whole chromosome 1 of A. thaliana
  • MBE Home
  • This Issue
  • Next Article
    A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties
2013, 10(1): 185-198. doi: 10.3934/mbe.2013.10.185

A therapy inactivating the tumor angiogenic factors

1. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Calle Tar a s/n, 41012-Seville

Received  April 2012 Revised  September 2012 Published  December 2012

This paper is devoted to a nonlinear system of partial differential equations modeling the effect of an anti-angiogenic therapy based on an agent that binds to the tumor angiogenic factors. The main feature of the model under consideration is a nonlinear flux production of tumor angiogenic factors at the boundary of the tumor. It is proved the global existence for the nonlinear system and the effect in the large time behavior of the system for high doses of the therapeutic agent.
Citation: Cristian Morales-Rodrigo. A therapy inactivating the tumor angiogenic factors. Mathematical Biosciences & Engineering, 2013, 10 (1) : 185-198. doi: 10.3934/mbe.2013.10.185
References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems,, in, (1993), 9.   Google Scholar

[2]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Differential Equations, 146 (1998), 336.   Google Scholar

[3]

A. R. A. Anderson and M. A. J. Chaplain, Continuous and Discrete Mathematical Models of Tumor-induced Angiogenesis,, Bull. Math. Biol., 60 (1998), 857.  doi: 10.1006/bulm.1998.0042.  Google Scholar

[4]

M. A. J. Chaplain and A. M. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor,, IMA J. Math. Appl. Med. Biol., 10 (1993), 149.   Google Scholar

[5]

M. A. J. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumor development,, Math. Comput. Modelling, 23 (1996), 47.   Google Scholar

[6]

T. Cieślak and C. Morales-Rodrigo, Long-time behaviour of an angiogenesis model with flux at the tumor boundary,, Preprint, ().   Google Scholar

[7]

M. Delgado, I. Gayte, C. Morales-Rodrigo and A. Suárez, An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary,, Nonlinear Anal., 72 (2010), 330.   Google Scholar

[8]

M. Delgado, C. Morales-Rodrigo and A. Suárez, Anti-angiogenic therapy based on the binding receptors,, Discrete Contin. Dyn. Syst. Ser A, 32 (2012), 3871.  doi: 10.3934/dcds.2012.32.3871.  Google Scholar

[9]

M. Delgado, C. Morales-Rodrigo, A. Suárez and J. I. Tello, On a parabolic-elliptic chemotactic model with coupled boundary conditions,, Nonlinear Analysis RWA, 11 (2010), 3884.  doi: 10.1016/j.nonrwa.2010.02.016.  Google Scholar

[10]

M. Delgado and A. Suárez, Study of an elliptic system arising from angiogenesis with chemotaxis and flux at the boundary,, J. Differential Equations, 244 (2008), 3119.   Google Scholar

[11]

M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis,, SIAM J. Math. Anal., 33 (2002), 1330.  doi: 10.1137/S0036141001385046.  Google Scholar

[12]

J. García-Melián, J. D. Rossi and J. Sabina, Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions,, Comm. Comtemporary Math., 11 (2009), 585.   Google Scholar

[13]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes Math., (1981).   Google Scholar

[14]

H. A. Levine, B. D. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of the onset of capillary formation initiating angiogenesis,, J. Math. Biol., 42 (2001), 195.  doi: 10.1007/s002850000037.  Google Scholar

[15]

D. Manoussaki, A mechanochemical model of angiogenesis and vasculogenesis,, ESAIM Math. Modelling Num. Anal., 37 (2003), 581.   Google Scholar

[16]

N. V. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumor induced angiogenesis,, J. Math. Biol., 49 (2004), 111.   Google Scholar

[17]

M. Owen, T. Alarcón, P. K. Maini and H. M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues,, J. Math. Biol., 58 (2009), 689.  doi: 10.1007/s00285-008-0213-z.  Google Scholar

[18]

R. M. Sutherland, Cell and environment interactions in tumor microregions: The multicell spheroid model,, Science, 240 (1988), 177.  doi: 10.1126/science.2451290.  Google Scholar

[19]

M. Winkler, Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.   Google Scholar

show all references

References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems,, in, (1993), 9.   Google Scholar

[2]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Differential Equations, 146 (1998), 336.   Google Scholar

[3]

A. R. A. Anderson and M. A. J. Chaplain, Continuous and Discrete Mathematical Models of Tumor-induced Angiogenesis,, Bull. Math. Biol., 60 (1998), 857.  doi: 10.1006/bulm.1998.0042.  Google Scholar

[4]

M. A. J. Chaplain and A. M. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor,, IMA J. Math. Appl. Med. Biol., 10 (1993), 149.   Google Scholar

[5]

M. A. J. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumor development,, Math. Comput. Modelling, 23 (1996), 47.   Google Scholar

[6]

T. Cieślak and C. Morales-Rodrigo, Long-time behaviour of an angiogenesis model with flux at the tumor boundary,, Preprint, ().   Google Scholar

[7]

M. Delgado, I. Gayte, C. Morales-Rodrigo and A. Suárez, An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary,, Nonlinear Anal., 72 (2010), 330.   Google Scholar

[8]

M. Delgado, C. Morales-Rodrigo and A. Suárez, Anti-angiogenic therapy based on the binding receptors,, Discrete Contin. Dyn. Syst. Ser A, 32 (2012), 3871.  doi: 10.3934/dcds.2012.32.3871.  Google Scholar

[9]

M. Delgado, C. Morales-Rodrigo, A. Suárez and J. I. Tello, On a parabolic-elliptic chemotactic model with coupled boundary conditions,, Nonlinear Analysis RWA, 11 (2010), 3884.  doi: 10.1016/j.nonrwa.2010.02.016.  Google Scholar

[10]

M. Delgado and A. Suárez, Study of an elliptic system arising from angiogenesis with chemotaxis and flux at the boundary,, J. Differential Equations, 244 (2008), 3119.   Google Scholar

[11]

M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis,, SIAM J. Math. Anal., 33 (2002), 1330.  doi: 10.1137/S0036141001385046.  Google Scholar

[12]

J. García-Melián, J. D. Rossi and J. Sabina, Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions,, Comm. Comtemporary Math., 11 (2009), 585.   Google Scholar

[13]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes Math., (1981).   Google Scholar

[14]

H. A. Levine, B. D. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of the onset of capillary formation initiating angiogenesis,, J. Math. Biol., 42 (2001), 195.  doi: 10.1007/s002850000037.  Google Scholar

[15]

D. Manoussaki, A mechanochemical model of angiogenesis and vasculogenesis,, ESAIM Math. Modelling Num. Anal., 37 (2003), 581.   Google Scholar

[16]

N. V. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumor induced angiogenesis,, J. Math. Biol., 49 (2004), 111.   Google Scholar

[17]

M. Owen, T. Alarcón, P. K. Maini and H. M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues,, J. Math. Biol., 58 (2009), 689.  doi: 10.1007/s00285-008-0213-z.  Google Scholar

[18]

R. M. Sutherland, Cell and environment interactions in tumor microregions: The multicell spheroid model,, Science, 240 (1988), 177.  doi: 10.1126/science.2451290.  Google Scholar

[19]

M. Winkler, Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.   Google Scholar

[1]

Adam Glick, Antonio Mastroberardino. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020343

[2]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[3]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[4]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[5]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[6]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[7]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]