
Previous Article
Distributed delays in a hybrid model of tumorImmune system interplay
 MBE Home
 This Issue

Next Article
Agestructured cell population model to study the influence of growth factors on cell cycle dynamics
Model of tumour angiogenesis  analysis of stability with respect to delays
1.  Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02097 Warsaw, Poland, Poland, Poland, Poland 
References:
[1] 
Z. Agur, L. Arakelyan, P. Daugulis and Y. Ginosar, Hopf point analysis for angiogenesis models, Discrete Contin. Dyn. Syst. B, 4 (2004), 2938. 
[2] 
L. Arakelyan, Y. Merbl and Z. Agur, Vessel maturation effects on tumour growth: validation of a computer model in implanted human ovarian carcinoma spheroids, European J. Cancer, 41 (2005), 159167. 
[3] 
L. Arakelyan, V. Vainstein and Z. Agur, A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of antiangiogenic and antimaturation therapy on vascular tumor growth, Angiogenesis, 5 (2002), 203214. 
[4] 
M. Bodnar and U. Foryś, Angiogenesis model with carrying capacity depending on vessel density, J. Biol. Sys., 17 (2009), 125. doi: 10.1142/S0218339009002739. 
[5] 
K. L. Cooke and P. van den Driessche, On zeroes of some transcendental equations, Funkcj. Ekvacioj, 29 (1986), 7790. 
[6] 
A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Math. Biosci., 191 (2004), 159184. doi: 10.1016/j.mbs.2004.06.003. 
[7] 
_______, The response to antiangiogenic anticancer drugs that inhibit endothelial cell proliferation, Applied Mathematics and Computation, 181 (2006), 11551162. 
[8] 
_______, A family of models of angiogenesis and antiangiogenesis anticancer therapy, Math. Med. Biol., 26 (2009), 6395. 
[9] 
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Math. Biosci. Eng., 222 (2009), 1326. doi: 10.1016/j.mbs.2009.08.004. 
[10] 
J. M. L. Ebos and R. S. Kerbel, Antiangiogenic therapy: Impact on invasion, disease progression, and metastasis,, Nat. Rev. Clin. Oncol., 8 (): 1. 
[11] 
U. Foryś, Biological delay systems and the {Mikhailov criterion of stability}, J. Biol. Sys., 12 (2004), 4560. doi: 10.1142/S0218339004001014. 
[12] 
U. Foryś, Y. Kheifetz and Y. Kogan, Critical point analysis for threevariable cancer angiogenesis model, Math. Biosci. Eng., 2 (2005), 511525. 
[13] 
M. Gałach, Dynamics of the tumorimmune system competition  the effect of time delay, Int J Appl Math Comput Sci, 3 (2003), 395406. 
[14] 
A. Gilead and M. Neeman, Dynamic remodeling of the vascular bed precedes tumor growth: MLS ovarian carcinoma spheroids implanted in nude mice, Neoplasia, 1 (1999), 226230. doi: 10.1038/sj.neo.7900032. 
[15] 
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res., 59 (1999), 47704775 (eng). 
[16] 
J. K. Hale, "Theory of Functional Differential Equations," Springer, New York, 1977. 
[17] 
J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations," Springer, New York, 1993. 
[18] 
S. J. Holash, G. D. Wiegandand and G. D. Yancopoulos, New model of tumour angiogenesis: Dynamic balance between vessel regression andgrowth mediated by angiopoietins and VEGF, Oncogene, 18 (1999), 53565362. 
[19] 
R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science, 307 (2005), 5862 (eng). 
[20] 
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Academic Press Inc., 1993. 
[21] 
V. A. Kuznetzov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunologenic tumors: Parameters estimation and global bifurcation analysis, Bull Math Biol, 56 (1994), 295321. 
[22] 
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Control Optim., 46 (2007), 10521079. 
[23] 
_______, Optimal and suboptimal protocols for a class of mathematical models of tumor antiangiogenesis, J. Theor. Biol., 252 (2008), 295312. 
[24] 
M. J. Piotrowska and U. Foryś, Analysis of the Hopf bifurcation for the family of angiogenesis models, J. Math. Anal. Appl., 382 (2011), 180203. doi: 10.1016/j.jmaa.2011.04.046. 
[25] 
_______, The nature of Hopf bifurcation for the Gompertz model with delays, Math. and Comp. Modelling, 54 (2011), 21832198. doi: 10.1016/j.mcm.2011.05.027. 
[26] 
A. Świerniak, Comparison of six models of antiangiogenic therapy, Appl. Math., 36 (2009), 333348. 
[27] 
A. Świerniak, A. Gala, A. Gandolfi and A. d'Onofrio, Optimalization of antiangiogenic therapy as optimal control problem, in "Proc: IASTED Biomechanics 2006" Actapress, (2006). 
[28] 
H. Ch. Wu, Ch. T. Huang and D. K. Chang, Antiangiogenic therapeutic drugs for treatment of human cancer, J. Cancer Mol. 4 (2008), 3745. 
show all references
References:
[1] 
Z. Agur, L. Arakelyan, P. Daugulis and Y. Ginosar, Hopf point analysis for angiogenesis models, Discrete Contin. Dyn. Syst. B, 4 (2004), 2938. 
[2] 
L. Arakelyan, Y. Merbl and Z. Agur, Vessel maturation effects on tumour growth: validation of a computer model in implanted human ovarian carcinoma spheroids, European J. Cancer, 41 (2005), 159167. 
[3] 
L. Arakelyan, V. Vainstein and Z. Agur, A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of antiangiogenic and antimaturation therapy on vascular tumor growth, Angiogenesis, 5 (2002), 203214. 
[4] 
M. Bodnar and U. Foryś, Angiogenesis model with carrying capacity depending on vessel density, J. Biol. Sys., 17 (2009), 125. doi: 10.1142/S0218339009002739. 
[5] 
K. L. Cooke and P. van den Driessche, On zeroes of some transcendental equations, Funkcj. Ekvacioj, 29 (1986), 7790. 
[6] 
A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Math. Biosci., 191 (2004), 159184. doi: 10.1016/j.mbs.2004.06.003. 
[7] 
_______, The response to antiangiogenic anticancer drugs that inhibit endothelial cell proliferation, Applied Mathematics and Computation, 181 (2006), 11551162. 
[8] 
_______, A family of models of angiogenesis and antiangiogenesis anticancer therapy, Math. Med. Biol., 26 (2009), 6395. 
[9] 
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Math. Biosci. Eng., 222 (2009), 1326. doi: 10.1016/j.mbs.2009.08.004. 
[10] 
J. M. L. Ebos and R. S. Kerbel, Antiangiogenic therapy: Impact on invasion, disease progression, and metastasis,, Nat. Rev. Clin. Oncol., 8 (): 1. 
[11] 
U. Foryś, Biological delay systems and the {Mikhailov criterion of stability}, J. Biol. Sys., 12 (2004), 4560. doi: 10.1142/S0218339004001014. 
[12] 
U. Foryś, Y. Kheifetz and Y. Kogan, Critical point analysis for threevariable cancer angiogenesis model, Math. Biosci. Eng., 2 (2005), 511525. 
[13] 
M. Gałach, Dynamics of the tumorimmune system competition  the effect of time delay, Int J Appl Math Comput Sci, 3 (2003), 395406. 
[14] 
A. Gilead and M. Neeman, Dynamic remodeling of the vascular bed precedes tumor growth: MLS ovarian carcinoma spheroids implanted in nude mice, Neoplasia, 1 (1999), 226230. doi: 10.1038/sj.neo.7900032. 
[15] 
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res., 59 (1999), 47704775 (eng). 
[16] 
J. K. Hale, "Theory of Functional Differential Equations," Springer, New York, 1977. 
[17] 
J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations," Springer, New York, 1993. 
[18] 
S. J. Holash, G. D. Wiegandand and G. D. Yancopoulos, New model of tumour angiogenesis: Dynamic balance between vessel regression andgrowth mediated by angiopoietins and VEGF, Oncogene, 18 (1999), 53565362. 
[19] 
R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science, 307 (2005), 5862 (eng). 
[20] 
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Academic Press Inc., 1993. 
[21] 
V. A. Kuznetzov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunologenic tumors: Parameters estimation and global bifurcation analysis, Bull Math Biol, 56 (1994), 295321. 
[22] 
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Control Optim., 46 (2007), 10521079. 
[23] 
_______, Optimal and suboptimal protocols for a class of mathematical models of tumor antiangiogenesis, J. Theor. Biol., 252 (2008), 295312. 
[24] 
M. J. Piotrowska and U. Foryś, Analysis of the Hopf bifurcation for the family of angiogenesis models, J. Math. Anal. Appl., 382 (2011), 180203. doi: 10.1016/j.jmaa.2011.04.046. 
[25] 
_______, The nature of Hopf bifurcation for the Gompertz model with delays, Math. and Comp. Modelling, 54 (2011), 21832198. doi: 10.1016/j.mcm.2011.05.027. 
[26] 
A. Świerniak, Comparison of six models of antiangiogenic therapy, Appl. Math., 36 (2009), 333348. 
[27] 
A. Świerniak, A. Gala, A. Gandolfi and A. d'Onofrio, Optimalization of antiangiogenic therapy as optimal control problem, in "Proc: IASTED Biomechanics 2006" Actapress, (2006). 
[28] 
H. Ch. Wu, Ch. T. Huang and D. K. Chang, Antiangiogenic therapeutic drugs for treatment of human cancer, J. Cancer Mol. 4 (2008), 3745. 
[1] 
Zvia Agur, L. Arakelyan, P. Daugulis, Y. Ginosar. Hopf point analysis for angiogenesis models. Discrete and Continuous Dynamical Systems  B, 2004, 4 (1) : 2938. doi: 10.3934/dcdsb.2004.4.29 
[2] 
R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure and Applied Analysis, 2003, 2 (2) : 147158. doi: 10.3934/cpaa.2003.2.147 
[3] 
Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopfpitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems  S, 2017, 10 (3) : 523542. doi: 10.3934/dcdss.2017026 
[4] 
Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete and Continuous Dynamical Systems  S, 2017, 10 (5) : 11651174. doi: 10.3934/dcdss.2017063 
[5] 
Eugen Stumpf. Local stability analysis of differential equations with statedependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 34453461. doi: 10.3934/dcds.2016.36.3445 
[6] 
Philip Gerlee, Alexander R. A. Anderson. Diffusionlimited tumour growth: Simulations and analysis. Mathematical Biosciences & Engineering, 2010, 7 (2) : 385400. doi: 10.3934/mbe.2010.7.385 
[7] 
Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355368. doi: 10.3934/mbe.2007.4.355 
[8] 
Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a sixdimensional FitzHughNagumo neural network with delay by a synchronized scheme. Discrete and Continuous Dynamical Systems  B, 2011, 16 (2) : 457474. doi: 10.3934/dcdsb.2011.16.457 
[9] 
Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predatorprey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693715. doi: 10.3934/mbe.2018031 
[10] 
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367376. doi: 10.3934/proc.2009.2009.367 
[11] 
Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic meansquare stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems  B, 2013, 18 (6) : 15211531. doi: 10.3934/dcdsb.2013.18.1521 
[12] 
Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha$Norm for a class of partial functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 115135. doi: 10.3934/dcds.2011.30.115 
[13] 
Yanqiang Chang, Huabin Chen. Stability analysis of stochastic delay differential equations with Markovian switching driven by Lévy noise. Discrete and Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021301 
[14] 
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differentialalgebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 16411660. doi: 10.3934/era.2020084 
[15] 
Leonid Shaikhet. Stability of equilibriums of stochastically perturbed delay differential neoclassical growth model. Discrete and Continuous Dynamical Systems  B, 2017, 22 (4) : 15651573. doi: 10.3934/dcdsb.2017075 
[16] 
Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 24732510. doi: 10.3934/dcds.2019105 
[17] 
Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure and Applied Analysis, 2011, 10 (5) : 13611375. doi: 10.3934/cpaa.2011.10.1361 
[18] 
Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems  S, 2022 doi: 10.3934/dcdss.2022069 
[19] 
Jan Čermák, Jana Hrabalová. Delaydependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 45774588. doi: 10.3934/dcds.2014.34.4577 
[20] 
Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with statedependent delay. Discrete and Continuous Dynamical Systems  B, 2018, 23 (2) : 667700. doi: 10.3934/dcdsb.2018038 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]