• Previous Article
    A Cellular Potts model simulating cell migration on and in matrix environments
  • MBE Home
  • This Issue
  • Next Article
    Genome characterization through dichotomic classes: An analysis of the whole chromosome 1 of A. thaliana
2013, 10(1): 221-234. doi: 10.3934/mbe.2013.10.221

Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response

1. 

Universidade de São Paulo, Depto de Matemática Aplicada e Estatística, ICMC, USP, 13560-970, São Carlos, Brazil

2. 

Universidade Estadual Paulista, Depto de Bioestatística, IBB, UNESP, 18618-970, Botucatu, Brazil

Received  April 2012 Revised  September 2012 Published  December 2012

Dosage and frequency of treatment schedules are important for successful chemotherapy. However, in this work we argue that cell-kill response and tumoral growth should not be seen as separate and therefore are essential in a mathematical cancer model. This paper presents a mathematical model for sequencing of cancer chemotherapy and surgery. Our purpose is to investigate treatments for large human tumours considering a suitable cell-kill dynamics. We use some biological and pharmacological data in a numerical approach, where drug administration occurs in cycles (periodic infusion) and surgery is performed instantaneously. Moreover, we also present an analysis of stability for a chemotherapeutic model with continuous drug administration. According to Norton & Simon [22], our results indicate that chemotherapy is less efficient in treating tumours that have reached a plateau level of growing and that a combination with surgical treatment can provide better outcomes.
Citation: Diego Samuel Rodrigues, Paulo Fernando de Arruda Mancera. Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response. Mathematical Biosciences & Engineering, 2013, 10 (1) : 221-234. doi: 10.3934/mbe.2013.10.221
References:
[1]

R. E. Bellman., "Mathematical Methods in Medicine,'', World Scientific Publishing Co. Inc., (1983).   Google Scholar

[2]

T. Browder, C. E. Butterfield, B. M. Kraling, B. Shi, B. Marshall, M. S. O'Reilly and J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer,, Cancer Res., 60 (2000), 1878.   Google Scholar

[3]

R. N. Buick, Cellular basis of chemotherapy,, in, (1994).   Google Scholar

[4]

L. G. de Pillis and A. E. Radunskaya, A mathematical tumor model model with immune resistance and drug therapy: An optimal control approach,, J. Theor. Med., 3 (2001), 79.  doi: 10.1080/10273660108833067.  Google Scholar

[5]

L. G. de Pillis, W. Gu, K. R. Fister, T. Head, K. Maples, A. Murugan, T. Neal and K. Yoshida, Chemotherapy for tumors: Analysis of the dynamics and a study of quadratic and linear optimal controls,, Math. Biosc., 209 (2007), 292.  doi: 10.1016/j.mbs.2006.05.003.  Google Scholar

[6]

A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, An optimal delivery of combination therapy for tumors,, Math. Biosc., 222 (2009), 13.  doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[7]

R. T. Dorr and D. D. Von Hoff, "Cancer Chemotherapy Handbook,'', McGraw-Hill, (1994).   Google Scholar

[8]

FEC100 chemotherapy for breast cancer (Written by Jeremy Braybrooke)., Document number: ASWCS09 BR006 [internet] accessed 27/07/2011, available from , ().   Google Scholar

[9]

{N. Ferrara and H. P. Gerber}, The role of vascular endothelial growth factor in angiogenesis,, Acta Haematol., 106 (2001), 148.  doi: 10.1159/000046610.  Google Scholar

[10]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.  doi: 10.1137/S0036139902413489.  Google Scholar

[11]

R. A. Gatenby, Application of competition theory to tumour growth: Implications for tumour biology and treatment,, Eur. J. Cancer, 32A (1996), 722.  doi: 10.1016/0959-8049(95)00658-3.  Google Scholar

[12]

R. S. Kerbel, Tumour angiogenesis: Past, present and the near future,, Carcinogenesis, 21 (2000), 505.  doi: 10.1093/carcin/21.3.505.  Google Scholar

[13]

M. Kohandel, S. Sivaloganathan and A. Oza, Mathematical modeling of ovarian cancer treatments: Sequencing of surgery and chemotherapy,, J. Theor. Biol., 242 (2006), 62.  doi: 10.1016/j.jtbi.2006.02.001.  Google Scholar

[14]

L. G. Marcu and E. Bezak, Neoadjuvant cisplatin for head and neck cancer: simulation of a novel schedule for improved therapeutic ratio,, J. Theor. Biol., 297 (2012), 41.  doi: 10.1016/j.jtbi.2011.12.001.  Google Scholar

[15]

R. B. Martin, M. E. Fisher, R. F. Minchin and K. L. Teo, Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells,, Math. Biosc., 110 (1992), 221.  doi: 10.1016/0025-5564(92)90039-Y.  Google Scholar

[16]

R. B. Martin and K. L. Teo, "Optimal Control of Drug Administration in Cancer Chemotherapy,'', World Scientific, (1994).   Google Scholar

[17]

R. B. Martin, Optimal control drug scheduling of cancer chemotherapy,, Automatica 28 (1992), 28 (1992), 113.  doi: 10.1016/0005-1098(92)90054-J.  Google Scholar

[18]

MeadJohnson Oncology Products [internet], http://patient.cancerconsultants.com/druginserts/Cyclophosphamide.pdf., accessed 29/02/2012., ().   Google Scholar

[19]

R. D. Mosteller, Simplified calculation of body surface area,, N. Engl. J. Med., (1987).   Google Scholar

[20]

S. Mukherjee, "The Emperor of All Maladies: A Biography of Cancer,'', Scribner, (2010).   Google Scholar

[21]

F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy,, Math. Biosc., 163 (2000), 159.  doi: 10.1016/S0025-5564(99)00058-9.  Google Scholar

[22]

L. Norton and R. Simon, The Norton-Simon hypothesis revisited,, Cancer Treat. Rep., 70 (1986), 163.   Google Scholar

[23]

S. T. R. Pinho, H. I. Freedman and F. K. Nani, A chemotherapy model for the treatment of cancer with metastasis,, Math. Comp. Model., 36 (2002), 773.  doi: 10.1016/S0895-7177(02)00227-3.  Google Scholar

[24]

S. T. R. Pinho, F. S. Bacelar, R. F. S. Andrade and H. I. Freedman, A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy,, Nonlin. Anal.: Real World Appl., 14 (2013), 815.  doi: 10.1016/j.nonrwa.2012.07.034.  Google Scholar

[25]

D. S. Rodrigues, S. T. R. Pinho and P. F. A. Mancera, Um modelo matemático em quimio-terapia,, TEMA, 13 (2012), 1.  doi: 10.5540/tema.2012.013.01.0001.  Google Scholar

[26]

D. S. Rodrigues, P. F. A. Mancera and S. T. R. Pinho, Accessing the effect of metronomic chemotherapy through a simple mathematical model,, 2012, ().   Google Scholar

[27]

F. M. Schaebel, Concepts for systematic treatment of micrometastases,, Cancer, 35 (1975), 15.  doi: 10.1002/1097-0142(197501)35:1<15::AID-CNCR2820350104>3.0.CO;2-W.  Google Scholar

[28]

H. E. Skipper, F. M. Schaebel-Jr. and W. S. Wilcox, Experimental evaluation of potential anticancer agents XIII: on the criteria and kinetics associated with curability of experimental leukemia,, Cancer Chemother. Rep., 35 (1964), 1.   Google Scholar

[29]

J. S. Spratt, J. S. Meyer and J. A. Spratt, Rates of growth of human neoplasms: part II,, J. Surg. Oncol., 61 (1996), 68.  doi: 10.1002/1096-9098(199601)61:1<68::AID-JSO2930610102>3.0.CO;2-E.  Google Scholar

[30]

G. S. Stamatakos, E. A. Kolokotroni, D. D. Dionysiou, E. C. Georgiadi and C. Desmedt, An advanced discrete state-discrete event multiscale simulation model of the response of a solid tumour to chemotherapy: mimicking a clinical study,, J. Theor. Biol., 266 (2010), 124.  doi: 10.1016/j.jtbi.2010.05.019.  Google Scholar

[31]

V. G. Vaidya and F. J. Alexandro Jr., Evaluation of some mathematical models for tumor growth,, Int. J. Biom. Comput., 13 (1982), 19.  doi: 10.1016/0020-7101(82)90048-4.  Google Scholar

[32]

World Health Organization, http://www.who.int/cancer/en/, accessed 02/03/2012., ().   Google Scholar

[33]

R. A. Weinberg, "The Biology of Cancer,'', Garland Science, (2008).   Google Scholar

show all references

References:
[1]

R. E. Bellman., "Mathematical Methods in Medicine,'', World Scientific Publishing Co. Inc., (1983).   Google Scholar

[2]

T. Browder, C. E. Butterfield, B. M. Kraling, B. Shi, B. Marshall, M. S. O'Reilly and J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer,, Cancer Res., 60 (2000), 1878.   Google Scholar

[3]

R. N. Buick, Cellular basis of chemotherapy,, in, (1994).   Google Scholar

[4]

L. G. de Pillis and A. E. Radunskaya, A mathematical tumor model model with immune resistance and drug therapy: An optimal control approach,, J. Theor. Med., 3 (2001), 79.  doi: 10.1080/10273660108833067.  Google Scholar

[5]

L. G. de Pillis, W. Gu, K. R. Fister, T. Head, K. Maples, A. Murugan, T. Neal and K. Yoshida, Chemotherapy for tumors: Analysis of the dynamics and a study of quadratic and linear optimal controls,, Math. Biosc., 209 (2007), 292.  doi: 10.1016/j.mbs.2006.05.003.  Google Scholar

[6]

A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, An optimal delivery of combination therapy for tumors,, Math. Biosc., 222 (2009), 13.  doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[7]

R. T. Dorr and D. D. Von Hoff, "Cancer Chemotherapy Handbook,'', McGraw-Hill, (1994).   Google Scholar

[8]

FEC100 chemotherapy for breast cancer (Written by Jeremy Braybrooke)., Document number: ASWCS09 BR006 [internet] accessed 27/07/2011, available from , ().   Google Scholar

[9]

{N. Ferrara and H. P. Gerber}, The role of vascular endothelial growth factor in angiogenesis,, Acta Haematol., 106 (2001), 148.  doi: 10.1159/000046610.  Google Scholar

[10]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.  doi: 10.1137/S0036139902413489.  Google Scholar

[11]

R. A. Gatenby, Application of competition theory to tumour growth: Implications for tumour biology and treatment,, Eur. J. Cancer, 32A (1996), 722.  doi: 10.1016/0959-8049(95)00658-3.  Google Scholar

[12]

R. S. Kerbel, Tumour angiogenesis: Past, present and the near future,, Carcinogenesis, 21 (2000), 505.  doi: 10.1093/carcin/21.3.505.  Google Scholar

[13]

M. Kohandel, S. Sivaloganathan and A. Oza, Mathematical modeling of ovarian cancer treatments: Sequencing of surgery and chemotherapy,, J. Theor. Biol., 242 (2006), 62.  doi: 10.1016/j.jtbi.2006.02.001.  Google Scholar

[14]

L. G. Marcu and E. Bezak, Neoadjuvant cisplatin for head and neck cancer: simulation of a novel schedule for improved therapeutic ratio,, J. Theor. Biol., 297 (2012), 41.  doi: 10.1016/j.jtbi.2011.12.001.  Google Scholar

[15]

R. B. Martin, M. E. Fisher, R. F. Minchin and K. L. Teo, Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells,, Math. Biosc., 110 (1992), 221.  doi: 10.1016/0025-5564(92)90039-Y.  Google Scholar

[16]

R. B. Martin and K. L. Teo, "Optimal Control of Drug Administration in Cancer Chemotherapy,'', World Scientific, (1994).   Google Scholar

[17]

R. B. Martin, Optimal control drug scheduling of cancer chemotherapy,, Automatica 28 (1992), 28 (1992), 113.  doi: 10.1016/0005-1098(92)90054-J.  Google Scholar

[18]

MeadJohnson Oncology Products [internet], http://patient.cancerconsultants.com/druginserts/Cyclophosphamide.pdf., accessed 29/02/2012., ().   Google Scholar

[19]

R. D. Mosteller, Simplified calculation of body surface area,, N. Engl. J. Med., (1987).   Google Scholar

[20]

S. Mukherjee, "The Emperor of All Maladies: A Biography of Cancer,'', Scribner, (2010).   Google Scholar

[21]

F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy,, Math. Biosc., 163 (2000), 159.  doi: 10.1016/S0025-5564(99)00058-9.  Google Scholar

[22]

L. Norton and R. Simon, The Norton-Simon hypothesis revisited,, Cancer Treat. Rep., 70 (1986), 163.   Google Scholar

[23]

S. T. R. Pinho, H. I. Freedman and F. K. Nani, A chemotherapy model for the treatment of cancer with metastasis,, Math. Comp. Model., 36 (2002), 773.  doi: 10.1016/S0895-7177(02)00227-3.  Google Scholar

[24]

S. T. R. Pinho, F. S. Bacelar, R. F. S. Andrade and H. I. Freedman, A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy,, Nonlin. Anal.: Real World Appl., 14 (2013), 815.  doi: 10.1016/j.nonrwa.2012.07.034.  Google Scholar

[25]

D. S. Rodrigues, S. T. R. Pinho and P. F. A. Mancera, Um modelo matemático em quimio-terapia,, TEMA, 13 (2012), 1.  doi: 10.5540/tema.2012.013.01.0001.  Google Scholar

[26]

D. S. Rodrigues, P. F. A. Mancera and S. T. R. Pinho, Accessing the effect of metronomic chemotherapy through a simple mathematical model,, 2012, ().   Google Scholar

[27]

F. M. Schaebel, Concepts for systematic treatment of micrometastases,, Cancer, 35 (1975), 15.  doi: 10.1002/1097-0142(197501)35:1<15::AID-CNCR2820350104>3.0.CO;2-W.  Google Scholar

[28]

H. E. Skipper, F. M. Schaebel-Jr. and W. S. Wilcox, Experimental evaluation of potential anticancer agents XIII: on the criteria and kinetics associated with curability of experimental leukemia,, Cancer Chemother. Rep., 35 (1964), 1.   Google Scholar

[29]

J. S. Spratt, J. S. Meyer and J. A. Spratt, Rates of growth of human neoplasms: part II,, J. Surg. Oncol., 61 (1996), 68.  doi: 10.1002/1096-9098(199601)61:1<68::AID-JSO2930610102>3.0.CO;2-E.  Google Scholar

[30]

G. S. Stamatakos, E. A. Kolokotroni, D. D. Dionysiou, E. C. Georgiadi and C. Desmedt, An advanced discrete state-discrete event multiscale simulation model of the response of a solid tumour to chemotherapy: mimicking a clinical study,, J. Theor. Biol., 266 (2010), 124.  doi: 10.1016/j.jtbi.2010.05.019.  Google Scholar

[31]

V. G. Vaidya and F. J. Alexandro Jr., Evaluation of some mathematical models for tumor growth,, Int. J. Biom. Comput., 13 (1982), 19.  doi: 10.1016/0020-7101(82)90048-4.  Google Scholar

[32]

World Health Organization, http://www.who.int/cancer/en/, accessed 02/03/2012., ().   Google Scholar

[33]

R. A. Weinberg, "The Biology of Cancer,'', Garland Science, (2008).   Google Scholar

[1]

Sabine Hittmeir, Laura Kanzler, Angelika Manhart, Christian Schmeiser. Kinetic modelling of colonies of myxobacteria. Kinetic & Related Models, 2021, 14 (1) : 1-24. doi: 10.3934/krm.2020046

[2]

Adam Glick, Antonio Mastroberardino. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020343

[3]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[4]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[5]

M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424

[6]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[7]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

[8]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[9]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[10]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[11]

Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020369

[12]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[13]

Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021005

[14]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (5)

[Back to Top]