• Previous Article
    Genome characterization through dichotomic classes: An analysis of the whole chromosome 1 of A. thaliana
  • MBE Home
  • This Issue
  • Next Article
    A Cellular Potts model simulating cell migration on and in matrix environments
2013, 10(1): 221-234. doi: 10.3934/mbe.2013.10.221

Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response

1. 

Universidade de São Paulo, Depto de Matemática Aplicada e Estatística, ICMC, USP, 13560-970, São Carlos, Brazil

2. 

Universidade Estadual Paulista, Depto de Bioestatística, IBB, UNESP, 18618-970, Botucatu, Brazil

Received  April 2012 Revised  September 2012 Published  December 2012

Dosage and frequency of treatment schedules are important for successful chemotherapy. However, in this work we argue that cell-kill response and tumoral growth should not be seen as separate and therefore are essential in a mathematical cancer model. This paper presents a mathematical model for sequencing of cancer chemotherapy and surgery. Our purpose is to investigate treatments for large human tumours considering a suitable cell-kill dynamics. We use some biological and pharmacological data in a numerical approach, where drug administration occurs in cycles (periodic infusion) and surgery is performed instantaneously. Moreover, we also present an analysis of stability for a chemotherapeutic model with continuous drug administration. According to Norton & Simon [22], our results indicate that chemotherapy is less efficient in treating tumours that have reached a plateau level of growing and that a combination with surgical treatment can provide better outcomes.
Citation: Diego Samuel Rodrigues, Paulo Fernando de Arruda Mancera. Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response. Mathematical Biosciences & Engineering, 2013, 10 (1) : 221-234. doi: 10.3934/mbe.2013.10.221
References:
[1]

R. E. Bellman., "Mathematical Methods in Medicine,'', World Scientific Publishing Co. Inc., (1983). Google Scholar

[2]

T. Browder, C. E. Butterfield, B. M. Kraling, B. Shi, B. Marshall, M. S. O'Reilly and J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer,, Cancer Res., 60 (2000), 1878. Google Scholar

[3]

R. N. Buick, Cellular basis of chemotherapy,, in, (1994). Google Scholar

[4]

L. G. de Pillis and A. E. Radunskaya, A mathematical tumor model model with immune resistance and drug therapy: An optimal control approach,, J. Theor. Med., 3 (2001), 79. doi: 10.1080/10273660108833067. Google Scholar

[5]

L. G. de Pillis, W. Gu, K. R. Fister, T. Head, K. Maples, A. Murugan, T. Neal and K. Yoshida, Chemotherapy for tumors: Analysis of the dynamics and a study of quadratic and linear optimal controls,, Math. Biosc., 209 (2007), 292. doi: 10.1016/j.mbs.2006.05.003. Google Scholar

[6]

A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, An optimal delivery of combination therapy for tumors,, Math. Biosc., 222 (2009), 13. doi: 10.1016/j.mbs.2009.08.004. Google Scholar

[7]

R. T. Dorr and D. D. Von Hoff, "Cancer Chemotherapy Handbook,'', McGraw-Hill, (1994). Google Scholar

[8]

FEC100 chemotherapy for breast cancer (Written by Jeremy Braybrooke)., Document number: ASWCS09 BR006 [internet] accessed 27/07/2011, available from , (). Google Scholar

[9]

{N. Ferrara and H. P. Gerber}, The role of vascular endothelial growth factor in angiogenesis,, Acta Haematol., 106 (2001), 148. doi: 10.1159/000046610. Google Scholar

[10]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954. doi: 10.1137/S0036139902413489. Google Scholar

[11]

R. A. Gatenby, Application of competition theory to tumour growth: Implications for tumour biology and treatment,, Eur. J. Cancer, 32A (1996), 722. doi: 10.1016/0959-8049(95)00658-3. Google Scholar

[12]

R. S. Kerbel, Tumour angiogenesis: Past, present and the near future,, Carcinogenesis, 21 (2000), 505. doi: 10.1093/carcin/21.3.505. Google Scholar

[13]

M. Kohandel, S. Sivaloganathan and A. Oza, Mathematical modeling of ovarian cancer treatments: Sequencing of surgery and chemotherapy,, J. Theor. Biol., 242 (2006), 62. doi: 10.1016/j.jtbi.2006.02.001. Google Scholar

[14]

L. G. Marcu and E. Bezak, Neoadjuvant cisplatin for head and neck cancer: simulation of a novel schedule for improved therapeutic ratio,, J. Theor. Biol., 297 (2012), 41. doi: 10.1016/j.jtbi.2011.12.001. Google Scholar

[15]

R. B. Martin, M. E. Fisher, R. F. Minchin and K. L. Teo, Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells,, Math. Biosc., 110 (1992), 221. doi: 10.1016/0025-5564(92)90039-Y. Google Scholar

[16]

R. B. Martin and K. L. Teo, "Optimal Control of Drug Administration in Cancer Chemotherapy,'', World Scientific, (1994). Google Scholar

[17]

R. B. Martin, Optimal control drug scheduling of cancer chemotherapy,, Automatica 28 (1992), 28 (1992), 113. doi: 10.1016/0005-1098(92)90054-J. Google Scholar

[18]

MeadJohnson Oncology Products [internet], http://patient.cancerconsultants.com/druginserts/Cyclophosphamide.pdf., accessed 29/02/2012., (). Google Scholar

[19]

R. D. Mosteller, Simplified calculation of body surface area,, N. Engl. J. Med., (1987). Google Scholar

[20]

S. Mukherjee, "The Emperor of All Maladies: A Biography of Cancer,'', Scribner, (2010). Google Scholar

[21]

F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy,, Math. Biosc., 163 (2000), 159. doi: 10.1016/S0025-5564(99)00058-9. Google Scholar

[22]

L. Norton and R. Simon, The Norton-Simon hypothesis revisited,, Cancer Treat. Rep., 70 (1986), 163. Google Scholar

[23]

S. T. R. Pinho, H. I. Freedman and F. K. Nani, A chemotherapy model for the treatment of cancer with metastasis,, Math. Comp. Model., 36 (2002), 773. doi: 10.1016/S0895-7177(02)00227-3. Google Scholar

[24]

S. T. R. Pinho, F. S. Bacelar, R. F. S. Andrade and H. I. Freedman, A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy,, Nonlin. Anal.: Real World Appl., 14 (2013), 815. doi: 10.1016/j.nonrwa.2012.07.034. Google Scholar

[25]

D. S. Rodrigues, S. T. R. Pinho and P. F. A. Mancera, Um modelo matemático em quimio-terapia,, TEMA, 13 (2012), 1. doi: 10.5540/tema.2012.013.01.0001. Google Scholar

[26]

D. S. Rodrigues, P. F. A. Mancera and S. T. R. Pinho, Accessing the effect of metronomic chemotherapy through a simple mathematical model,, 2012, (). Google Scholar

[27]

F. M. Schaebel, Concepts for systematic treatment of micrometastases,, Cancer, 35 (1975), 15. doi: 10.1002/1097-0142(197501)35:1<15::AID-CNCR2820350104>3.0.CO;2-W. Google Scholar

[28]

H. E. Skipper, F. M. Schaebel-Jr. and W. S. Wilcox, Experimental evaluation of potential anticancer agents XIII: on the criteria and kinetics associated with curability of experimental leukemia,, Cancer Chemother. Rep., 35 (1964), 1. Google Scholar

[29]

J. S. Spratt, J. S. Meyer and J. A. Spratt, Rates of growth of human neoplasms: part II,, J. Surg. Oncol., 61 (1996), 68. doi: 10.1002/1096-9098(199601)61:1<68::AID-JSO2930610102>3.0.CO;2-E. Google Scholar

[30]

G. S. Stamatakos, E. A. Kolokotroni, D. D. Dionysiou, E. C. Georgiadi and C. Desmedt, An advanced discrete state-discrete event multiscale simulation model of the response of a solid tumour to chemotherapy: mimicking a clinical study,, J. Theor. Biol., 266 (2010), 124. doi: 10.1016/j.jtbi.2010.05.019. Google Scholar

[31]

V. G. Vaidya and F. J. Alexandro Jr., Evaluation of some mathematical models for tumor growth,, Int. J. Biom. Comput., 13 (1982), 19. doi: 10.1016/0020-7101(82)90048-4. Google Scholar

[32]

World Health Organization, http://www.who.int/cancer/en/, accessed 02/03/2012., (). Google Scholar

[33]

R. A. Weinberg, "The Biology of Cancer,'', Garland Science, (2008). Google Scholar

show all references

References:
[1]

R. E. Bellman., "Mathematical Methods in Medicine,'', World Scientific Publishing Co. Inc., (1983). Google Scholar

[2]

T. Browder, C. E. Butterfield, B. M. Kraling, B. Shi, B. Marshall, M. S. O'Reilly and J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer,, Cancer Res., 60 (2000), 1878. Google Scholar

[3]

R. N. Buick, Cellular basis of chemotherapy,, in, (1994). Google Scholar

[4]

L. G. de Pillis and A. E. Radunskaya, A mathematical tumor model model with immune resistance and drug therapy: An optimal control approach,, J. Theor. Med., 3 (2001), 79. doi: 10.1080/10273660108833067. Google Scholar

[5]

L. G. de Pillis, W. Gu, K. R. Fister, T. Head, K. Maples, A. Murugan, T. Neal and K. Yoshida, Chemotherapy for tumors: Analysis of the dynamics and a study of quadratic and linear optimal controls,, Math. Biosc., 209 (2007), 292. doi: 10.1016/j.mbs.2006.05.003. Google Scholar

[6]

A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, An optimal delivery of combination therapy for tumors,, Math. Biosc., 222 (2009), 13. doi: 10.1016/j.mbs.2009.08.004. Google Scholar

[7]

R. T. Dorr and D. D. Von Hoff, "Cancer Chemotherapy Handbook,'', McGraw-Hill, (1994). Google Scholar

[8]

FEC100 chemotherapy for breast cancer (Written by Jeremy Braybrooke)., Document number: ASWCS09 BR006 [internet] accessed 27/07/2011, available from , (). Google Scholar

[9]

{N. Ferrara and H. P. Gerber}, The role of vascular endothelial growth factor in angiogenesis,, Acta Haematol., 106 (2001), 148. doi: 10.1159/000046610. Google Scholar

[10]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954. doi: 10.1137/S0036139902413489. Google Scholar

[11]

R. A. Gatenby, Application of competition theory to tumour growth: Implications for tumour biology and treatment,, Eur. J. Cancer, 32A (1996), 722. doi: 10.1016/0959-8049(95)00658-3. Google Scholar

[12]

R. S. Kerbel, Tumour angiogenesis: Past, present and the near future,, Carcinogenesis, 21 (2000), 505. doi: 10.1093/carcin/21.3.505. Google Scholar

[13]

M. Kohandel, S. Sivaloganathan and A. Oza, Mathematical modeling of ovarian cancer treatments: Sequencing of surgery and chemotherapy,, J. Theor. Biol., 242 (2006), 62. doi: 10.1016/j.jtbi.2006.02.001. Google Scholar

[14]

L. G. Marcu and E. Bezak, Neoadjuvant cisplatin for head and neck cancer: simulation of a novel schedule for improved therapeutic ratio,, J. Theor. Biol., 297 (2012), 41. doi: 10.1016/j.jtbi.2011.12.001. Google Scholar

[15]

R. B. Martin, M. E. Fisher, R. F. Minchin and K. L. Teo, Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells,, Math. Biosc., 110 (1992), 221. doi: 10.1016/0025-5564(92)90039-Y. Google Scholar

[16]

R. B. Martin and K. L. Teo, "Optimal Control of Drug Administration in Cancer Chemotherapy,'', World Scientific, (1994). Google Scholar

[17]

R. B. Martin, Optimal control drug scheduling of cancer chemotherapy,, Automatica 28 (1992), 28 (1992), 113. doi: 10.1016/0005-1098(92)90054-J. Google Scholar

[18]

MeadJohnson Oncology Products [internet], http://patient.cancerconsultants.com/druginserts/Cyclophosphamide.pdf., accessed 29/02/2012., (). Google Scholar

[19]

R. D. Mosteller, Simplified calculation of body surface area,, N. Engl. J. Med., (1987). Google Scholar

[20]

S. Mukherjee, "The Emperor of All Maladies: A Biography of Cancer,'', Scribner, (2010). Google Scholar

[21]

F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy,, Math. Biosc., 163 (2000), 159. doi: 10.1016/S0025-5564(99)00058-9. Google Scholar

[22]

L. Norton and R. Simon, The Norton-Simon hypothesis revisited,, Cancer Treat. Rep., 70 (1986), 163. Google Scholar

[23]

S. T. R. Pinho, H. I. Freedman and F. K. Nani, A chemotherapy model for the treatment of cancer with metastasis,, Math. Comp. Model., 36 (2002), 773. doi: 10.1016/S0895-7177(02)00227-3. Google Scholar

[24]

S. T. R. Pinho, F. S. Bacelar, R. F. S. Andrade and H. I. Freedman, A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy,, Nonlin. Anal.: Real World Appl., 14 (2013), 815. doi: 10.1016/j.nonrwa.2012.07.034. Google Scholar

[25]

D. S. Rodrigues, S. T. R. Pinho and P. F. A. Mancera, Um modelo matemático em quimio-terapia,, TEMA, 13 (2012), 1. doi: 10.5540/tema.2012.013.01.0001. Google Scholar

[26]

D. S. Rodrigues, P. F. A. Mancera and S. T. R. Pinho, Accessing the effect of metronomic chemotherapy through a simple mathematical model,, 2012, (). Google Scholar

[27]

F. M. Schaebel, Concepts for systematic treatment of micrometastases,, Cancer, 35 (1975), 15. doi: 10.1002/1097-0142(197501)35:1<15::AID-CNCR2820350104>3.0.CO;2-W. Google Scholar

[28]

H. E. Skipper, F. M. Schaebel-Jr. and W. S. Wilcox, Experimental evaluation of potential anticancer agents XIII: on the criteria and kinetics associated with curability of experimental leukemia,, Cancer Chemother. Rep., 35 (1964), 1. Google Scholar

[29]

J. S. Spratt, J. S. Meyer and J. A. Spratt, Rates of growth of human neoplasms: part II,, J. Surg. Oncol., 61 (1996), 68. doi: 10.1002/1096-9098(199601)61:1<68::AID-JSO2930610102>3.0.CO;2-E. Google Scholar

[30]

G. S. Stamatakos, E. A. Kolokotroni, D. D. Dionysiou, E. C. Georgiadi and C. Desmedt, An advanced discrete state-discrete event multiscale simulation model of the response of a solid tumour to chemotherapy: mimicking a clinical study,, J. Theor. Biol., 266 (2010), 124. doi: 10.1016/j.jtbi.2010.05.019. Google Scholar

[31]

V. G. Vaidya and F. J. Alexandro Jr., Evaluation of some mathematical models for tumor growth,, Int. J. Biom. Comput., 13 (1982), 19. doi: 10.1016/0020-7101(82)90048-4. Google Scholar

[32]

World Health Organization, http://www.who.int/cancer/en/, accessed 02/03/2012., (). Google Scholar

[33]

R. A. Weinberg, "The Biology of Cancer,'', Garland Science, (2008). Google Scholar

[1]

Luis A. Fernández, Cecilia Pola. Optimal control problems for the Gompertz model under the Norton-Simon hypothesis in chemotherapy. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2577-2612. doi: 10.3934/dcdsb.2018266

[2]

Juan Pablo Aparicio, Carlos Castillo-Chávez. Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences & Engineering, 2009, 6 (2) : 209-237. doi: 10.3934/mbe.2009.6.209

[3]

Urszula Ledzewicz, Behrooz Amini, Heinz Schättler. Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1257-1275. doi: 10.3934/mbe.2015.12.1257

[4]

Geoffrey Beck, Sebastien Imperiale, Patrick Joly. Mathematical modelling of multi conductor cables. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 521-546. doi: 10.3934/dcdss.2015.8.521

[5]

Nirav Dalal, David Greenhalgh, Xuerong Mao. Mathematical modelling of internal HIV dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 305-321. doi: 10.3934/dcdsb.2009.12.305

[6]

Oliver Penrose, John W. Cahn. On the mathematical modelling of cellular (discontinuous) precipitation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 963-982. doi: 10.3934/dcds.2017040

[7]

Hsiu-Chuan Wei. Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1279-1295. doi: 10.3934/dcdsb.2016.21.1279

[8]

Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040

[9]

Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014

[10]

Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White. Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1435-1463. doi: 10.3934/mbe.2018066

[11]

Marek Bodnar, Monika Joanna Piotrowska, Magdalena Urszula Bogdańska. Mathematical analysis of a generalised model of chemotherapy for low grade gliomas. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2149-2167. doi: 10.3934/dcdsb.2019088

[12]

Liumei Wu, Baojun Song, Wen Du, Jie Lou. Mathematical modelling and control of echinococcus in Qinghai province, China. Mathematical Biosciences & Engineering, 2013, 10 (2) : 425-444. doi: 10.3934/mbe.2013.10.425

[13]

Roderick Melnik, B. Lassen, L. C Lew Yan Voon, M. Willatzen, C. Galeriu. Accounting for nonlinearities in mathematical modelling of quantum dot molecules. Conference Publications, 2005, 2005 (Special) : 642-651. doi: 10.3934/proc.2005.2005.642

[14]

Luis L. Bonilla, Vincenzo Capasso, Mariano Alvaro, Manuel Carretero, Filippo Terragni. On the mathematical modelling of tumor-induced angiogenesis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 45-66. doi: 10.3934/mbe.2017004

[15]

M.A.J Chaplain, G. Lolas. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks & Heterogeneous Media, 2006, 1 (3) : 399-439. doi: 10.3934/nhm.2006.1.399

[16]

Christos V. Nikolopoulos. Mathematical modelling of a mushy region formation during sulphation of calcium carbonate. Networks & Heterogeneous Media, 2014, 9 (4) : 635-654. doi: 10.3934/nhm.2014.9.635

[17]

Alexandre Cornet. Mathematical modelling of cardiac pulse wave reflections due to arterial irregularities. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1055-1076. doi: 10.3934/mbe.2018047

[18]

Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa. A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences & Engineering, 2005, 2 (4) : 811-832. doi: 10.3934/mbe.2005.2.811

[19]

Urszula Ledzewicz, Helmut Maurer, Heinz Schättler. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Mathematical Biosciences & Engineering, 2011, 8 (2) : 307-323. doi: 10.3934/mbe.2011.8.307

[20]

Clara Rojas, Juan Belmonte-Beitia, Víctor M. Pérez-García, Helmut Maurer. Dynamics and optimal control of chemotherapy for low grade gliomas: Insights from a mathematical model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1895-1915. doi: 10.3934/dcdsb.2016028

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]