-
Previous Article
A Cellular Potts model simulating cell migration on and in matrix environments
- MBE Home
- This Issue
-
Next Article
Genome characterization through dichotomic classes: An analysis of the whole chromosome 1 of A. thaliana
Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response
1. | Universidade de São Paulo, Depto de Matemática Aplicada e Estatística, ICMC, USP, 13560-970, São Carlos, Brazil |
2. | Universidade Estadual Paulista, Depto de Bioestatística, IBB, UNESP, 18618-970, Botucatu, Brazil |
References:
[1] |
R. E. Bellman., "Mathematical Methods in Medicine,'', World Scientific Publishing Co. Inc., (1983).
|
[2] |
T. Browder, C. E. Butterfield, B. M. Kraling, B. Shi, B. Marshall, M. S. O'Reilly and J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer,, Cancer Res., 60 (2000), 1878. Google Scholar |
[3] |
R. N. Buick, Cellular basis of chemotherapy,, in, (1994). Google Scholar |
[4] |
L. G. de Pillis and A. E. Radunskaya, A mathematical tumor model model with immune resistance and drug therapy: An optimal control approach,, J. Theor. Med., 3 (2001), 79.
doi: 10.1080/10273660108833067. |
[5] |
L. G. de Pillis, W. Gu, K. R. Fister, T. Head, K. Maples, A. Murugan, T. Neal and K. Yoshida, Chemotherapy for tumors: Analysis of the dynamics and a study of quadratic and linear optimal controls,, Math. Biosc., 209 (2007), 292.
doi: 10.1016/j.mbs.2006.05.003. |
[6] |
A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, An optimal delivery of combination therapy for tumors,, Math. Biosc., 222 (2009), 13.
doi: 10.1016/j.mbs.2009.08.004. |
[7] |
R. T. Dorr and D. D. Von Hoff, "Cancer Chemotherapy Handbook,'', McGraw-Hill, (1994). Google Scholar |
[8] |
FEC100 chemotherapy for breast cancer (Written by Jeremy Braybrooke)., Document number: ASWCS09 BR006 [internet] accessed 27/07/2011, available from , (). Google Scholar |
[9] |
{N. Ferrara and H. P. Gerber}, The role of vascular endothelial growth factor in angiogenesis,, Acta Haematol., 106 (2001), 148.
doi: 10.1159/000046610. |
[10] |
K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.
doi: 10.1137/S0036139902413489. |
[11] |
R. A. Gatenby, Application of competition theory to tumour growth: Implications for tumour biology and treatment,, Eur. J. Cancer, 32A (1996), 722.
doi: 10.1016/0959-8049(95)00658-3. |
[12] |
R. S. Kerbel, Tumour angiogenesis: Past, present and the near future,, Carcinogenesis, 21 (2000), 505.
doi: 10.1093/carcin/21.3.505. |
[13] |
M. Kohandel, S. Sivaloganathan and A. Oza, Mathematical modeling of ovarian cancer treatments: Sequencing of surgery and chemotherapy,, J. Theor. Biol., 242 (2006), 62.
doi: 10.1016/j.jtbi.2006.02.001. |
[14] |
L. G. Marcu and E. Bezak, Neoadjuvant cisplatin for head and neck cancer: simulation of a novel schedule for improved therapeutic ratio,, J. Theor. Biol., 297 (2012), 41.
doi: 10.1016/j.jtbi.2011.12.001. |
[15] |
R. B. Martin, M. E. Fisher, R. F. Minchin and K. L. Teo, Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells,, Math. Biosc., 110 (1992), 221.
doi: 10.1016/0025-5564(92)90039-Y. |
[16] |
R. B. Martin and K. L. Teo, "Optimal Control of Drug Administration in Cancer Chemotherapy,'', World Scientific, (1994). Google Scholar |
[17] |
R. B. Martin, Optimal control drug scheduling of cancer chemotherapy,, Automatica 28 (1992), 28 (1992), 113.
doi: 10.1016/0005-1098(92)90054-J. |
[18] |
MeadJohnson Oncology Products [internet], http://patient.cancerconsultants.com/druginserts/Cyclophosphamide.pdf., accessed 29/02/2012., (). Google Scholar |
[19] |
R. D. Mosteller, Simplified calculation of body surface area,, N. Engl. J. Med., (1987). Google Scholar |
[20] |
S. Mukherjee, "The Emperor of All Maladies: A Biography of Cancer,'', Scribner, (2010). Google Scholar |
[21] |
F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy,, Math. Biosc., 163 (2000), 159.
doi: 10.1016/S0025-5564(99)00058-9. |
[22] |
L. Norton and R. Simon, The Norton-Simon hypothesis revisited,, Cancer Treat. Rep., 70 (1986), 163. Google Scholar |
[23] |
S. T. R. Pinho, H. I. Freedman and F. K. Nani, A chemotherapy model for the treatment of cancer with metastasis,, Math. Comp. Model., 36 (2002), 773.
doi: 10.1016/S0895-7177(02)00227-3. |
[24] |
S. T. R. Pinho, F. S. Bacelar, R. F. S. Andrade and H. I. Freedman, A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy,, Nonlin. Anal.: Real World Appl., 14 (2013), 815.
doi: 10.1016/j.nonrwa.2012.07.034. |
[25] |
D. S. Rodrigues, S. T. R. Pinho and P. F. A. Mancera, Um modelo matemático em quimio-terapia,, TEMA, 13 (2012), 1.
doi: 10.5540/tema.2012.013.01.0001. |
[26] |
D. S. Rodrigues, P. F. A. Mancera and S. T. R. Pinho, Accessing the effect of metronomic chemotherapy through a simple mathematical model,, 2012, (). Google Scholar |
[27] |
F. M. Schaebel, Concepts for systematic treatment of micrometastases,, Cancer, 35 (1975), 15.
doi: 10.1002/1097-0142(197501)35:1<15::AID-CNCR2820350104>3.0.CO;2-W. |
[28] |
H. E. Skipper, F. M. Schaebel-Jr. and W. S. Wilcox, Experimental evaluation of potential anticancer agents XIII: on the criteria and kinetics associated with curability of experimental leukemia,, Cancer Chemother. Rep., 35 (1964), 1. Google Scholar |
[29] |
J. S. Spratt, J. S. Meyer and J. A. Spratt, Rates of growth of human neoplasms: part II,, J. Surg. Oncol., 61 (1996), 68.
doi: 10.1002/1096-9098(199601)61:1<68::AID-JSO2930610102>3.0.CO;2-E. |
[30] |
G. S. Stamatakos, E. A. Kolokotroni, D. D. Dionysiou, E. C. Georgiadi and C. Desmedt, An advanced discrete state-discrete event multiscale simulation model of the response of a solid tumour to chemotherapy: mimicking a clinical study,, J. Theor. Biol., 266 (2010), 124.
doi: 10.1016/j.jtbi.2010.05.019. |
[31] |
V. G. Vaidya and F. J. Alexandro Jr., Evaluation of some mathematical models for tumor growth,, Int. J. Biom. Comput., 13 (1982), 19.
doi: 10.1016/0020-7101(82)90048-4. |
[32] |
World Health Organization, http://www.who.int/cancer/en/, accessed 02/03/2012., (). Google Scholar |
[33] |
R. A. Weinberg, "The Biology of Cancer,'', Garland Science, (2008). Google Scholar |
show all references
References:
[1] |
R. E. Bellman., "Mathematical Methods in Medicine,'', World Scientific Publishing Co. Inc., (1983).
|
[2] |
T. Browder, C. E. Butterfield, B. M. Kraling, B. Shi, B. Marshall, M. S. O'Reilly and J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer,, Cancer Res., 60 (2000), 1878. Google Scholar |
[3] |
R. N. Buick, Cellular basis of chemotherapy,, in, (1994). Google Scholar |
[4] |
L. G. de Pillis and A. E. Radunskaya, A mathematical tumor model model with immune resistance and drug therapy: An optimal control approach,, J. Theor. Med., 3 (2001), 79.
doi: 10.1080/10273660108833067. |
[5] |
L. G. de Pillis, W. Gu, K. R. Fister, T. Head, K. Maples, A. Murugan, T. Neal and K. Yoshida, Chemotherapy for tumors: Analysis of the dynamics and a study of quadratic and linear optimal controls,, Math. Biosc., 209 (2007), 292.
doi: 10.1016/j.mbs.2006.05.003. |
[6] |
A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, An optimal delivery of combination therapy for tumors,, Math. Biosc., 222 (2009), 13.
doi: 10.1016/j.mbs.2009.08.004. |
[7] |
R. T. Dorr and D. D. Von Hoff, "Cancer Chemotherapy Handbook,'', McGraw-Hill, (1994). Google Scholar |
[8] |
FEC100 chemotherapy for breast cancer (Written by Jeremy Braybrooke)., Document number: ASWCS09 BR006 [internet] accessed 27/07/2011, available from , (). Google Scholar |
[9] |
{N. Ferrara and H. P. Gerber}, The role of vascular endothelial growth factor in angiogenesis,, Acta Haematol., 106 (2001), 148.
doi: 10.1159/000046610. |
[10] |
K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954.
doi: 10.1137/S0036139902413489. |
[11] |
R. A. Gatenby, Application of competition theory to tumour growth: Implications for tumour biology and treatment,, Eur. J. Cancer, 32A (1996), 722.
doi: 10.1016/0959-8049(95)00658-3. |
[12] |
R. S. Kerbel, Tumour angiogenesis: Past, present and the near future,, Carcinogenesis, 21 (2000), 505.
doi: 10.1093/carcin/21.3.505. |
[13] |
M. Kohandel, S. Sivaloganathan and A. Oza, Mathematical modeling of ovarian cancer treatments: Sequencing of surgery and chemotherapy,, J. Theor. Biol., 242 (2006), 62.
doi: 10.1016/j.jtbi.2006.02.001. |
[14] |
L. G. Marcu and E. Bezak, Neoadjuvant cisplatin for head and neck cancer: simulation of a novel schedule for improved therapeutic ratio,, J. Theor. Biol., 297 (2012), 41.
doi: 10.1016/j.jtbi.2011.12.001. |
[15] |
R. B. Martin, M. E. Fisher, R. F. Minchin and K. L. Teo, Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells,, Math. Biosc., 110 (1992), 221.
doi: 10.1016/0025-5564(92)90039-Y. |
[16] |
R. B. Martin and K. L. Teo, "Optimal Control of Drug Administration in Cancer Chemotherapy,'', World Scientific, (1994). Google Scholar |
[17] |
R. B. Martin, Optimal control drug scheduling of cancer chemotherapy,, Automatica 28 (1992), 28 (1992), 113.
doi: 10.1016/0005-1098(92)90054-J. |
[18] |
MeadJohnson Oncology Products [internet], http://patient.cancerconsultants.com/druginserts/Cyclophosphamide.pdf., accessed 29/02/2012., (). Google Scholar |
[19] |
R. D. Mosteller, Simplified calculation of body surface area,, N. Engl. J. Med., (1987). Google Scholar |
[20] |
S. Mukherjee, "The Emperor of All Maladies: A Biography of Cancer,'', Scribner, (2010). Google Scholar |
[21] |
F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy,, Math. Biosc., 163 (2000), 159.
doi: 10.1016/S0025-5564(99)00058-9. |
[22] |
L. Norton and R. Simon, The Norton-Simon hypothesis revisited,, Cancer Treat. Rep., 70 (1986), 163. Google Scholar |
[23] |
S. T. R. Pinho, H. I. Freedman and F. K. Nani, A chemotherapy model for the treatment of cancer with metastasis,, Math. Comp. Model., 36 (2002), 773.
doi: 10.1016/S0895-7177(02)00227-3. |
[24] |
S. T. R. Pinho, F. S. Bacelar, R. F. S. Andrade and H. I. Freedman, A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy,, Nonlin. Anal.: Real World Appl., 14 (2013), 815.
doi: 10.1016/j.nonrwa.2012.07.034. |
[25] |
D. S. Rodrigues, S. T. R. Pinho and P. F. A. Mancera, Um modelo matemático em quimio-terapia,, TEMA, 13 (2012), 1.
doi: 10.5540/tema.2012.013.01.0001. |
[26] |
D. S. Rodrigues, P. F. A. Mancera and S. T. R. Pinho, Accessing the effect of metronomic chemotherapy through a simple mathematical model,, 2012, (). Google Scholar |
[27] |
F. M. Schaebel, Concepts for systematic treatment of micrometastases,, Cancer, 35 (1975), 15.
doi: 10.1002/1097-0142(197501)35:1<15::AID-CNCR2820350104>3.0.CO;2-W. |
[28] |
H. E. Skipper, F. M. Schaebel-Jr. and W. S. Wilcox, Experimental evaluation of potential anticancer agents XIII: on the criteria and kinetics associated with curability of experimental leukemia,, Cancer Chemother. Rep., 35 (1964), 1. Google Scholar |
[29] |
J. S. Spratt, J. S. Meyer and J. A. Spratt, Rates of growth of human neoplasms: part II,, J. Surg. Oncol., 61 (1996), 68.
doi: 10.1002/1096-9098(199601)61:1<68::AID-JSO2930610102>3.0.CO;2-E. |
[30] |
G. S. Stamatakos, E. A. Kolokotroni, D. D. Dionysiou, E. C. Georgiadi and C. Desmedt, An advanced discrete state-discrete event multiscale simulation model of the response of a solid tumour to chemotherapy: mimicking a clinical study,, J. Theor. Biol., 266 (2010), 124.
doi: 10.1016/j.jtbi.2010.05.019. |
[31] |
V. G. Vaidya and F. J. Alexandro Jr., Evaluation of some mathematical models for tumor growth,, Int. J. Biom. Comput., 13 (1982), 19.
doi: 10.1016/0020-7101(82)90048-4. |
[32] |
World Health Organization, http://www.who.int/cancer/en/, accessed 02/03/2012., (). Google Scholar |
[33] |
R. A. Weinberg, "The Biology of Cancer,'', Garland Science, (2008). Google Scholar |
[1] |
Sabine Hittmeir, Laura Kanzler, Angelika Manhart, Christian Schmeiser. Kinetic modelling of colonies of myxobacteria. Kinetic & Related Models, 2021, 14 (1) : 1-24. doi: 10.3934/krm.2020046 |
[2] |
Adam Glick, Antonio Mastroberardino. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020343 |
[3] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[4] |
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133 |
[5] |
M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424 |
[6] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020446 |
[7] |
Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213 |
[8] |
Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382 |
[9] |
Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219 |
[10] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[11] |
Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020369 |
[12] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[13] |
Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021005 |
[14] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]