2013, 10(2): 279-294. doi: 10.3934/mbe.2013.10.279

Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images

1. 

Universitat Politècnica de València, Plaza Ferrándiz y Carbonell, n.2, Alcoy (Alicante), 03801, Spain, Spain

Received  April 2012 Revised  October 2012 Published  January 2013

Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.
Citation: Macarena Boix, Begoña Cantó. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images. Mathematical Biosciences & Engineering, 2013, 10 (2) : 279-294. doi: 10.3934/mbe.2013.10.279
References:
[1]

D. Anoraganingrum, Cell segmentation with median filter and mathematical morphology operation, in "International Conference on Image Analysis and Processing," 9 (1999), 183-188.

[2]

D. A. Bader, J. Jájá, D. Harwood and L. L. Davis, Parallel algorithms for image enhancement and segmentation by region growing, with an experimental study, Journal of Supercomputing, 10 (1996), 141-168.

[3]

C. C. Chiang, Y. P. Hung and G. C. Lee, A learning state-space model for image retrieval, IEEE. Trans. Mult., 10 (2008), 1-10.

[4]

H. Chan, J. Li-Jun and B. Jiang, Wavelet transform and morphology image segmentation algorism for blood cell, in "Industrial Electronics and Applications" ICIEA 2009, 4th IEEE Conference (2009), 542-545.

[5]

L. Costrarido, "Medical Image Analysis Methods: Medical-image Processing and Analysis for CAD Systems," $2^{nd}$ edition, Taylor and Francis, New York, 2005.

[6]

D. L. Donoho, An ideal spatial adaptation by wavelet shrinkage, Biometrika, 81 (1994), 425-455. doi: 10.1093/biomet/81.3.425.

[7]

D. L. Donoho, De-noising by soft thresholding, IEEE. Trans. Inf. Theory, 41 (1995), 613-627. doi: 10.1109/18.382009.

[8]

F. Gibou, D. Levy, C. Cárdenas, P. Liu and A. Boyer, Partial differential equations-based segmentation for radiotherapy treatment planning, Mathematical Biosciences and Engineering, 2 (2005), 209-226. doi: 10.3934/mbe.2005.2.209.

[9]

V. Grau, A. U. Mewes, M. Alcáñiz, R. Kikinis and S. K. Warfield, Improved watershed transform for medical image segmentation using prior information, IEEE. Trans. Med. Imaging, 23 (2004), 447-458.

[10]

K. B. How, A. S. Kok Bin, N. T. Siong and K. K. Soo, Red blood cell segmentation utilizing various image segmentation techniques, in "Proceedings of International Conference on Man-Machine Systems," Malaysia, (2006).

[11]

K. Jiang, Qing-Min and S. Y. Dai, A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering, in "Proceedings of The Second International Conference on Machine Learning and Cybernetics," Xian, (2003).

[12]

R. S. Kumar, A. Verma and J. Singh, Color image segmentation and multi-level thresholding by maximization of conditional entrophy, Int. Sig. Processing, 3 (2006).

[13]

J. Liang, S. Elangovan and J. Devotta, Application of wavelet transform in travelling wave protection, Int. Elect. Pow. Energy, 22 (2000), 537-542.

[14]

D. Liu and T. Chen, DISCOV: A framework for discovering objects in video, Int. Trans. Multimedia, 10 (2008), 200-208.

[15]

S. Mallat, Zero-crossings of a wavelet transform, Int. Trans. Inf. Theory, 37 (1991), 1019-1033. doi: 10.1109/18.86995.

[16]

S. Mallat and W. L. Hwang, Singularity detection and processing with wavelets, Int. Trans. Inf. Theory, 38 (1992), 617-643. doi: 10.1109/18.119727.

[17]

S. Mallat and S. Zhong, Charaterization of signals from multiscale edges, Int. Trans. Patt. Anal. Mac. Int., 14 (1992), 710-732.

[18]

B. Ninga, D. Qinyuna, H. Darena and F. Jib, Image coding based on multiband wavelet and adaptive quad-tree partition, Journal of Computational and Applied Mathematics, 195 (2006), 2-7. doi: 10.1016/j.cam.2005.07.013.

[19]

P.Soille, "Morphological Image Analysis: Principles and Applications," $2^{nd}$ edition, Springer-Verlag, New York, 1999.

[20]

M. Wang, X. Zhou, F. Li, J. Huckins, R. W. King and S. T. Wong, Novel cell segmentation and online learning algorithms for cell phase identification in automated time-lapse microscopy, in "Proceedings of Biomedical Imaging: From Nano to Macro 2007, ISBI 2007 4th IEEE International Symposium," (2007).

[21]

M. A. Wani, D. Zhang and H. Arabnia, Parallel edge-region-based segmentation algorithm targeted at reconfigurable multiRing network, Journal of Supercomputing, 25 (2003), 43-62.

[22]

J. Wu, P. Zeng, Y. Zhou and C. Olivier, A novel color segmentation method and its application to white blood cell image analysis, in "IEEE Proceeding, ICSP 2006", (2006).

[23]

Y. Zhai, D. Zhang, J. Sun and B. Wu, A novel variational model for image segmentation, Journal of Computational and Applied Mathematics, 235 (2011), 2234-2241. doi: 10.1016/j.cam.2010.10.020.

[24]

J. Y. Zhou, X. Fang and K. Ghosh, Multiresolution filtering with application to image segmentation, Math. Comp. Model., 24 (1996), 177-195. doi: 10.1016/0895-7177(96)00121-5.

[25]

J. Y. Zhou, E. P. Ong and C. C. Ko, Video object segmentation and tracking for content-based video coding, in "Proceedings of IEEE International Conference on Multimedia and Expo, ICME 2000," USA (2000).

show all references

References:
[1]

D. Anoraganingrum, Cell segmentation with median filter and mathematical morphology operation, in "International Conference on Image Analysis and Processing," 9 (1999), 183-188.

[2]

D. A. Bader, J. Jájá, D. Harwood and L. L. Davis, Parallel algorithms for image enhancement and segmentation by region growing, with an experimental study, Journal of Supercomputing, 10 (1996), 141-168.

[3]

C. C. Chiang, Y. P. Hung and G. C. Lee, A learning state-space model for image retrieval, IEEE. Trans. Mult., 10 (2008), 1-10.

[4]

H. Chan, J. Li-Jun and B. Jiang, Wavelet transform and morphology image segmentation algorism for blood cell, in "Industrial Electronics and Applications" ICIEA 2009, 4th IEEE Conference (2009), 542-545.

[5]

L. Costrarido, "Medical Image Analysis Methods: Medical-image Processing and Analysis for CAD Systems," $2^{nd}$ edition, Taylor and Francis, New York, 2005.

[6]

D. L. Donoho, An ideal spatial adaptation by wavelet shrinkage, Biometrika, 81 (1994), 425-455. doi: 10.1093/biomet/81.3.425.

[7]

D. L. Donoho, De-noising by soft thresholding, IEEE. Trans. Inf. Theory, 41 (1995), 613-627. doi: 10.1109/18.382009.

[8]

F. Gibou, D. Levy, C. Cárdenas, P. Liu and A. Boyer, Partial differential equations-based segmentation for radiotherapy treatment planning, Mathematical Biosciences and Engineering, 2 (2005), 209-226. doi: 10.3934/mbe.2005.2.209.

[9]

V. Grau, A. U. Mewes, M. Alcáñiz, R. Kikinis and S. K. Warfield, Improved watershed transform for medical image segmentation using prior information, IEEE. Trans. Med. Imaging, 23 (2004), 447-458.

[10]

K. B. How, A. S. Kok Bin, N. T. Siong and K. K. Soo, Red blood cell segmentation utilizing various image segmentation techniques, in "Proceedings of International Conference on Man-Machine Systems," Malaysia, (2006).

[11]

K. Jiang, Qing-Min and S. Y. Dai, A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering, in "Proceedings of The Second International Conference on Machine Learning and Cybernetics," Xian, (2003).

[12]

R. S. Kumar, A. Verma and J. Singh, Color image segmentation and multi-level thresholding by maximization of conditional entrophy, Int. Sig. Processing, 3 (2006).

[13]

J. Liang, S. Elangovan and J. Devotta, Application of wavelet transform in travelling wave protection, Int. Elect. Pow. Energy, 22 (2000), 537-542.

[14]

D. Liu and T. Chen, DISCOV: A framework for discovering objects in video, Int. Trans. Multimedia, 10 (2008), 200-208.

[15]

S. Mallat, Zero-crossings of a wavelet transform, Int. Trans. Inf. Theory, 37 (1991), 1019-1033. doi: 10.1109/18.86995.

[16]

S. Mallat and W. L. Hwang, Singularity detection and processing with wavelets, Int. Trans. Inf. Theory, 38 (1992), 617-643. doi: 10.1109/18.119727.

[17]

S. Mallat and S. Zhong, Charaterization of signals from multiscale edges, Int. Trans. Patt. Anal. Mac. Int., 14 (1992), 710-732.

[18]

B. Ninga, D. Qinyuna, H. Darena and F. Jib, Image coding based on multiband wavelet and adaptive quad-tree partition, Journal of Computational and Applied Mathematics, 195 (2006), 2-7. doi: 10.1016/j.cam.2005.07.013.

[19]

P.Soille, "Morphological Image Analysis: Principles and Applications," $2^{nd}$ edition, Springer-Verlag, New York, 1999.

[20]

M. Wang, X. Zhou, F. Li, J. Huckins, R. W. King and S. T. Wong, Novel cell segmentation and online learning algorithms for cell phase identification in automated time-lapse microscopy, in "Proceedings of Biomedical Imaging: From Nano to Macro 2007, ISBI 2007 4th IEEE International Symposium," (2007).

[21]

M. A. Wani, D. Zhang and H. Arabnia, Parallel edge-region-based segmentation algorithm targeted at reconfigurable multiRing network, Journal of Supercomputing, 25 (2003), 43-62.

[22]

J. Wu, P. Zeng, Y. Zhou and C. Olivier, A novel color segmentation method and its application to white blood cell image analysis, in "IEEE Proceeding, ICSP 2006", (2006).

[23]

Y. Zhai, D. Zhang, J. Sun and B. Wu, A novel variational model for image segmentation, Journal of Computational and Applied Mathematics, 235 (2011), 2234-2241. doi: 10.1016/j.cam.2010.10.020.

[24]

J. Y. Zhou, X. Fang and K. Ghosh, Multiresolution filtering with application to image segmentation, Math. Comp. Model., 24 (1996), 177-195. doi: 10.1016/0895-7177(96)00121-5.

[25]

J. Y. Zhou, E. P. Ong and C. C. Ko, Video object segmentation and tracking for content-based video coding, in "Proceedings of IEEE International Conference on Multimedia and Expo, ICME 2000," USA (2000).

[1]

Braxton Osting, Dong Wang. Diffusion generated methods for denoising target-valued images. Inverse Problems and Imaging, 2020, 14 (2) : 205-232. doi: 10.3934/ipi.2020010

[2]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[3]

Karol Mikula, Jozef Urbán, Michal Kollár, Martin Ambroz, Ivan Jarolímek, Jozef Šibík, Mária Šibíková. Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1033-1046. doi: 10.3934/dcdss.2020231

[4]

Weihao Shen, Wenbo Xu, Hongyang Zhang, Zexin Sun, Jianxiong Ma, Xinlong Ma, Shoujun Zhou, Shijie Guo, Yuanquan Wang. Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net. Inverse Problems and Imaging, 2021, 15 (6) : 1333-1346. doi: 10.3934/ipi.2020057

[5]

Alexandra Fronville, Abdoulaye Sarr, Vincent Rodin. Modelling multi-cellular growth using morphological analysis. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 83-99. doi: 10.3934/dcdsb.2017004

[6]

Benedetto Bozzini, Deborah Lacitignola, Ivonne Sgura. Morphological spatial patterns in a reaction diffusion model for metal growth. Mathematical Biosciences & Engineering, 2010, 7 (2) : 237-258. doi: 10.3934/mbe.2010.7.237

[7]

Giuseppe Romanazzi, Giuseppina Settanni. Mathematical model for simulation of morphological changes associated to crypt fission in the colon. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022055

[8]

P. Cerejeiras, M. Ferreira, U. Kähler, F. Sommen. Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis. Communications on Pure and Applied Analysis, 2007, 6 (3) : 619-641. doi: 10.3934/cpaa.2007.6.619

[9]

Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems and Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191

[10]

Ronen Peretz, Nguyen Van Chau, L. Andrew Campbell, Carlos Gutierrez. Iterated images and the plane Jacobian conjecture. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 455-461. doi: 10.3934/dcds.2006.16.455

[11]

Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 131-151. doi: 10.3934/eect.2020019

[12]

Leonid A. Bunimovich. Dynamical systems and operations research: A basic model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 209-218. doi: 10.3934/dcdsb.2001.1.209

[13]

Galina Bobrik, Petr Bobrik, Irina Sukhorukova. The sensitivity of commodity markets to exchange operations such as swing. Journal of Dynamics and Games, 2021, 8 (2) : 119-128. doi: 10.3934/jdg.2020022

[14]

Tim McGraw, Baba Vemuri, Evren Özarslan, Yunmei Chen, Thomas Mareci. Variational denoising of diffusion weighted MRI. Inverse Problems and Imaging, 2009, 3 (4) : 625-648. doi: 10.3934/ipi.2009.3.625

[15]

Weihong Guo, Jing Qin. A geometry guided image denoising scheme. Inverse Problems and Imaging, 2013, 7 (2) : 499-521. doi: 10.3934/ipi.2013.7.499

[16]

Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347

[17]

Fan Jia, Xue-Cheng Tai, Jun Liu. Nonlocal regularized CNN for image segmentation. Inverse Problems and Imaging, 2020, 14 (5) : 891-911. doi: 10.3934/ipi.2020041

[18]

Jaouad Danane, Karam Allali. Optimal control of an HIV model with CTL cells and latently infected cells. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 207-225. doi: 10.3934/naco.2019048

[19]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[20]

Maciek Korzec, Andreas Münch, Endre Süli, Barbara Wagner. Anisotropy in wavelet-based phase field models. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1167-1187. doi: 10.3934/dcdsb.2016.21.1167

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]