2013, 10(2): 279-294. doi: 10.3934/mbe.2013.10.279

Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images

1. 

Universitat Politècnica de València, Plaza Ferrándiz y Carbonell, n.2, Alcoy (Alicante), 03801, Spain, Spain

Received  April 2012 Revised  October 2012 Published  January 2013

Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.
Citation: Macarena Boix, Begoña Cantó. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images. Mathematical Biosciences & Engineering, 2013, 10 (2) : 279-294. doi: 10.3934/mbe.2013.10.279
References:
[1]

D. Anoraganingrum, Cell segmentation with median filter and mathematical morphology operation,, in, 9 (1999), 183.

[2]

D. A. Bader, J. Jájá, D. Harwood and L. L. Davis, Parallel algorithms for image enhancement and segmentation by region growing, with an experimental study,, Journal of Supercomputing, 10 (1996), 141.

[3]

C. C. Chiang, Y. P. Hung and G. C. Lee, A learning state-space model for image retrieval,, IEEE. Trans. Mult., 10 (2008), 1.

[4]

H. Chan, J. Li-Jun and B. Jiang, Wavelet transform and morphology image segmentation algorism for blood cell,, in, (2009), 542.

[5]

L. Costrarido, "Medical Image Analysis Methods: Medical-image Processing and Analysis for CAD Systems,", $2^{nd}$ edition, (2005).

[6]

D. L. Donoho, An ideal spatial adaptation by wavelet shrinkage,, Biometrika, 81 (1994), 425. doi: 10.1093/biomet/81.3.425.

[7]

D. L. Donoho, De-noising by soft thresholding,, IEEE. Trans. Inf. Theory, 41 (1995), 613. doi: 10.1109/18.382009.

[8]

F. Gibou, D. Levy, C. Cárdenas, P. Liu and A. Boyer, Partial differential equations-based segmentation for radiotherapy treatment planning,, Mathematical Biosciences and Engineering, 2 (2005), 209. doi: 10.3934/mbe.2005.2.209.

[9]

V. Grau, A. U. Mewes, M. Alcáñiz, R. Kikinis and S. K. Warfield, Improved watershed transform for medical image segmentation using prior information,, IEEE. Trans. Med. Imaging, 23 (2004), 447.

[10]

K. B. How, A. S. Kok Bin, N. T. Siong and K. K. Soo, Red blood cell segmentation utilizing various image segmentation techniques,, in, (2006).

[11]

K. Jiang, Qing-Min and S. Y. Dai, A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering,, in, (2003).

[12]

R. S. Kumar, A. Verma and J. Singh, Color image segmentation and multi-level thresholding by maximization of conditional entrophy,, Int. Sig. Processing, 3 (2006).

[13]

J. Liang, S. Elangovan and J. Devotta, Application of wavelet transform in travelling wave protection,, Int. Elect. Pow. Energy, 22 (2000), 537.

[14]

D. Liu and T. Chen, DISCOV: A framework for discovering objects in video,, Int. Trans. Multimedia, 10 (2008), 200.

[15]

S. Mallat, Zero-crossings of a wavelet transform,, Int. Trans. Inf. Theory, 37 (1991), 1019. doi: 10.1109/18.86995.

[16]

S. Mallat and W. L. Hwang, Singularity detection and processing with wavelets,, Int. Trans. Inf. Theory, 38 (1992), 617. doi: 10.1109/18.119727.

[17]

S. Mallat and S. Zhong, Charaterization of signals from multiscale edges,, Int. Trans. Patt. Anal. Mac. Int., 14 (1992), 710.

[18]

B. Ninga, D. Qinyuna, H. Darena and F. Jib, Image coding based on multiband wavelet and adaptive quad-tree partition,, Journal of Computational and Applied Mathematics, 195 (2006), 2. doi: 10.1016/j.cam.2005.07.013.

[19]

P.Soille, "Morphological Image Analysis: Principles and Applications,", $2^{nd}$ edition, (1999).

[20]

M. Wang, X. Zhou, F. Li, J. Huckins, R. W. King and S. T. Wong, Novel cell segmentation and online learning algorithms for cell phase identification in automated time-lapse microscopy,, in, (2007).

[21]

M. A. Wani, D. Zhang and H. Arabnia, Parallel edge-region-based segmentation algorithm targeted at reconfigurable multiRing network,, Journal of Supercomputing, 25 (2003), 43.

[22]

J. Wu, P. Zeng, Y. Zhou and C. Olivier, A novel color segmentation method and its application to white blood cell image analysis,, in, (2006).

[23]

Y. Zhai, D. Zhang, J. Sun and B. Wu, A novel variational model for image segmentation,, Journal of Computational and Applied Mathematics, 235 (2011), 2234. doi: 10.1016/j.cam.2010.10.020.

[24]

J. Y. Zhou, X. Fang and K. Ghosh, Multiresolution filtering with application to image segmentation,, Math. Comp. Model., 24 (1996), 177. doi: 10.1016/0895-7177(96)00121-5.

[25]

J. Y. Zhou, E. P. Ong and C. C. Ko, Video object segmentation and tracking for content-based video coding,, in, (2000).

show all references

References:
[1]

D. Anoraganingrum, Cell segmentation with median filter and mathematical morphology operation,, in, 9 (1999), 183.

[2]

D. A. Bader, J. Jájá, D. Harwood and L. L. Davis, Parallel algorithms for image enhancement and segmentation by region growing, with an experimental study,, Journal of Supercomputing, 10 (1996), 141.

[3]

C. C. Chiang, Y. P. Hung and G. C. Lee, A learning state-space model for image retrieval,, IEEE. Trans. Mult., 10 (2008), 1.

[4]

H. Chan, J. Li-Jun and B. Jiang, Wavelet transform and morphology image segmentation algorism for blood cell,, in, (2009), 542.

[5]

L. Costrarido, "Medical Image Analysis Methods: Medical-image Processing and Analysis for CAD Systems,", $2^{nd}$ edition, (2005).

[6]

D. L. Donoho, An ideal spatial adaptation by wavelet shrinkage,, Biometrika, 81 (1994), 425. doi: 10.1093/biomet/81.3.425.

[7]

D. L. Donoho, De-noising by soft thresholding,, IEEE. Trans. Inf. Theory, 41 (1995), 613. doi: 10.1109/18.382009.

[8]

F. Gibou, D. Levy, C. Cárdenas, P. Liu and A. Boyer, Partial differential equations-based segmentation for radiotherapy treatment planning,, Mathematical Biosciences and Engineering, 2 (2005), 209. doi: 10.3934/mbe.2005.2.209.

[9]

V. Grau, A. U. Mewes, M. Alcáñiz, R. Kikinis and S. K. Warfield, Improved watershed transform for medical image segmentation using prior information,, IEEE. Trans. Med. Imaging, 23 (2004), 447.

[10]

K. B. How, A. S. Kok Bin, N. T. Siong and K. K. Soo, Red blood cell segmentation utilizing various image segmentation techniques,, in, (2006).

[11]

K. Jiang, Qing-Min and S. Y. Dai, A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering,, in, (2003).

[12]

R. S. Kumar, A. Verma and J. Singh, Color image segmentation and multi-level thresholding by maximization of conditional entrophy,, Int. Sig. Processing, 3 (2006).

[13]

J. Liang, S. Elangovan and J. Devotta, Application of wavelet transform in travelling wave protection,, Int. Elect. Pow. Energy, 22 (2000), 537.

[14]

D. Liu and T. Chen, DISCOV: A framework for discovering objects in video,, Int. Trans. Multimedia, 10 (2008), 200.

[15]

S. Mallat, Zero-crossings of a wavelet transform,, Int. Trans. Inf. Theory, 37 (1991), 1019. doi: 10.1109/18.86995.

[16]

S. Mallat and W. L. Hwang, Singularity detection and processing with wavelets,, Int. Trans. Inf. Theory, 38 (1992), 617. doi: 10.1109/18.119727.

[17]

S. Mallat and S. Zhong, Charaterization of signals from multiscale edges,, Int. Trans. Patt. Anal. Mac. Int., 14 (1992), 710.

[18]

B. Ninga, D. Qinyuna, H. Darena and F. Jib, Image coding based on multiband wavelet and adaptive quad-tree partition,, Journal of Computational and Applied Mathematics, 195 (2006), 2. doi: 10.1016/j.cam.2005.07.013.

[19]

P.Soille, "Morphological Image Analysis: Principles and Applications,", $2^{nd}$ edition, (1999).

[20]

M. Wang, X. Zhou, F. Li, J. Huckins, R. W. King and S. T. Wong, Novel cell segmentation and online learning algorithms for cell phase identification in automated time-lapse microscopy,, in, (2007).

[21]

M. A. Wani, D. Zhang and H. Arabnia, Parallel edge-region-based segmentation algorithm targeted at reconfigurable multiRing network,, Journal of Supercomputing, 25 (2003), 43.

[22]

J. Wu, P. Zeng, Y. Zhou and C. Olivier, A novel color segmentation method and its application to white blood cell image analysis,, in, (2006).

[23]

Y. Zhai, D. Zhang, J. Sun and B. Wu, A novel variational model for image segmentation,, Journal of Computational and Applied Mathematics, 235 (2011), 2234. doi: 10.1016/j.cam.2010.10.020.

[24]

J. Y. Zhou, X. Fang and K. Ghosh, Multiresolution filtering with application to image segmentation,, Math. Comp. Model., 24 (1996), 177. doi: 10.1016/0895-7177(96)00121-5.

[25]

J. Y. Zhou, E. P. Ong and C. C. Ko, Video object segmentation and tracking for content-based video coding,, in, (2000).

[1]

Ronen Peretz, Nguyen Van Chau, L. Andrew Campbell, Carlos Gutierrez. Iterated images and the plane Jacobian conjecture. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 455-461. doi: 10.3934/dcds.2006.16.455

[2]

Leonid A. Bunimovich. Dynamical systems and operations research: A basic model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 209-218. doi: 10.3934/dcdsb.2001.1.209

[3]

Tim McGraw, Baba Vemuri, Evren Özarslan, Yunmei Chen, Thomas Mareci. Variational denoising of diffusion weighted MRI. Inverse Problems & Imaging, 2009, 3 (4) : 625-648. doi: 10.3934/ipi.2009.3.625

[4]

Weihong Guo, Jing Qin. A geometry guided image denoising scheme. Inverse Problems & Imaging, 2013, 7 (2) : 499-521. doi: 10.3934/ipi.2013.7.499

[5]

P. Cerejeiras, M. Ferreira, U. Kähler, F. Sommen. Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis. Communications on Pure & Applied Analysis, 2007, 6 (3) : 619-641. doi: 10.3934/cpaa.2007.6.619

[6]

Alexandra Fronville, Abdoulaye Sarr, Vincent Rodin. Modelling multi-cellular growth using morphological analysis. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 83-99. doi: 10.3934/dcdsb.2017004

[7]

Benedetto Bozzini, Deborah Lacitignola, Ivonne Sgura. Morphological spatial patterns in a reaction diffusion model for metal growth. Mathematical Biosciences & Engineering, 2010, 7 (2) : 237-258. doi: 10.3934/mbe.2010.7.237

[8]

Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems & Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191

[9]

Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347

[10]

Dana Paquin, Doron Levy, Lei Xing. Multiscale deformable registration of noisy medical images. Mathematical Biosciences & Engineering, 2008, 5 (1) : 125-144. doi: 10.3934/mbe.2008.5.125

[11]

Lotfi Tadj, Zhe George Zhang, Chakib Tadj. A queueing analysis of multi-purpose production facility's operations. Journal of Industrial & Management Optimization, 2011, 7 (1) : 19-30. doi: 10.3934/jimo.2011.7.19

[12]

Masayuki Sato, Naoki Fujita, A. J. Sievers. Logic operations demonstrated with localized vibrations in a micromechanical cantilever array. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1287-1298. doi: 10.3934/dcdss.2011.4.1287

[13]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[14]

Maciek Korzec, Andreas Münch, Endre Süli, Barbara Wagner. Anisotropy in wavelet-based phase field models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1167-1187. doi: 10.3934/dcdsb.2016.21.1167

[15]

Andrey Yu. Verisokin, Darya V. Verveyko, Eugene B. Postnikov, Anastasia I. Lavrova. Wavelet analysis of phase clusters in a distributed biochemical system. Conference Publications, 2011, 2011 (Special) : 1404-1412. doi: 10.3934/proc.2011.2011.1404

[16]

Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33.

[17]

Stephan Didas, Joachim Weickert. Integrodifferential equations for continuous multiscale wavelet shrinkage. Inverse Problems & Imaging, 2007, 1 (1) : 47-62. doi: 10.3934/ipi.2007.1.47

[18]

Fred Brackx, Hennie De Schepper, Frank Sommen. A theoretical framework for wavelet analysis in a Hermitean Clifford setting. Communications on Pure & Applied Analysis, 2007, 6 (3) : 549-567. doi: 10.3934/cpaa.2007.6.549

[19]

Jingwei Liang, Jia Li, Zuowei Shen, Xiaoqun Zhang. Wavelet frame based color image demosaicing. Inverse Problems & Imaging, 2013, 7 (3) : 777-794. doi: 10.3934/ipi.2013.7.777

[20]

Jianzhong Wang. Wavelet approach to numerical differentiation of noisy functions. Communications on Pure & Applied Analysis, 2007, 6 (3) : 873-897. doi: 10.3934/cpaa.2007.6.873

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]