2013, 10(2): 295-318. doi: 10.3934/mbe.2013.10.295

Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation

1. 

Department of Mathematics, University of Houston, 4800 Calhoun Rd, Houston, TX 77204, United States

Received  July 2012 Revised  September 2012 Published  January 2013

Recent in vivo studies, utilizing ultrasound contour and speckle tracking methods, have identified significant longitudinal displacements of the intima-media complex, and viscoelastic arterial wall properties over a cardiac cycle. Existing computational models that use thin structure approximations of arterial walls have so far been limited to models that capture only radial wall displacements. The purpose of this work is to present a simple fluid-struture interaction (FSI) model and a stable, partitioned numerical scheme, which capture both longitudinal and radial displacements, as well as viscoelastic arterial wall properties. To test the computational model, longitudinal displacement of the common carotid artery and of the stenosed coronary arteries were compared with experimental data found in literature, showing excellent agreement. We found that, unlike radial displacement, longitudinal displacement in stenotic lesions is highly dependent on the stenotic geometry. We also showed that longitudinal displacement in atherosclerotic arteries is smaller than in healthy arteries, which is in line with the recent in vivo measurements that associate plaque burden with reduced total longitudinal wall displacement.
    This work presents a first step in understanding the role of longitudinal displacement in physiology and pathophysiology of arterial wall mechanics using computer simulations.
Citation: Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295
References:
[1]

Å. R. Ahlgren, M. Cinthio, S. Steen, H. W. Persson, T. Sjöberg and K. Lindström, Effects of adrenaline on longitudinal arterial wall movements and resulting intramural shear strain: A first report,, Clin. Physiol. Funct. Imaging, 29 (2009), 353. Google Scholar

[2]

R. L. Armentano, J. G. Barra, J. Levenson, A. Simon and R. H. Pichel, Arterial wall mechanics in conscious dogs: Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior,, Circulation Research, 76 (1995), 468. Google Scholar

[3]

R. Armentano, J. L. Megnien, A. Simon, F. Bellenfant, J. Barra and J. Levenson, Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans,, Hypertension, 26 (1995), 48. Google Scholar

[4]

S. Badia, F. Nobile and C. Vergara, Fluid-structure partitioned procedures based on Robin transmission conditions,, J. Comput. Phys., 227 (2008), 7027. doi: 10.1016/j.jcp.2008.04.006. Google Scholar

[5]

S. Badia, A. Quaini and A. Quarteroni, Splitting methods based on algebraic factorization for fluid-structure interaction,, SIAM J. Sci. Comput., 30 (2008), 1778. doi: 10.1137/070680497. Google Scholar

[6]

J. Bouthier, A. Benetos, A. Simon, J. Levenson and M. Safar, Pulsed Doppler evaluation of diameter, blood velocity and blood flow of common carotid artery in sustained essential hypertension,, J. Cardiovasc. Pharmacol., 7 (1985). Google Scholar

[7]

M. Bukač, S. Čanić, R. Glowinski, J. Tambača and A. Quaini, Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement,, Journal of Computational Physics. DOI: http://dx.doi.org/10.1016/j.bbr.2011.03.031 (2012)., (2012). Google Scholar

[8]

B. E. Bulwer and J. M. Rivero, "Echocardiography Pocket Guide: The Transthoracic Examination,", Jones & Bartlett Learning, (2010). Google Scholar

[9]

C. Bussy, P. Boutouyrie, P. Lacolley, P. Challande and S. Laurent, Intrinsic stiffness of the carotid arterial wall material in essential hypertensives,, Hypertension, 35 (2000), 1049. Google Scholar

[10]

S. Čanić, J. Tambaca, G. Guidoboni, A. Mikelic, C. J. Hartley and D. Rosenstrauch, Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow,, SIAM J. Appl. Math., 67 (2006), 164. doi: 10.1137/060651562. Google Scholar

[11]

S. Čanić, M. Bukač and B. Muha, Stability of the kinematically coupled $\beta$-scheme for simulation of fluid-structure interaction problems in hemodynamics,, Submitted, (2012). Google Scholar

[12]

P. Ciarlet, "Mathematical Elasticity: Theory of Shells,", North-Holland, (2000). Google Scholar

[13]

M. Cinthio, Å. R. Ahlgren, J. Bergkvist, T. Jansson, H. W. Persson and K. Lindstrom, Longitudinal movements and resulting shear strain of the arterial wall,, Am. J. Physiol. Heart Circ. Physiol., 291 (2006). Google Scholar

[14]

R. S. C. Cobbold, "Foundations of Biomedical Ultrasound,", Oxford University Press, (2007). Google Scholar

[15]

CREATIS., "Biomedical Imaging Laboratory,", University of Lyon-INSA, (2011). Google Scholar

[16]

V. Deplano and M. Siouffi, Experimental and numerical study of pulsatile flows through stenosis: Wall shear stress analysis,, Journal of Biomechanics, 32 (1999), 1081. Google Scholar

[17]

M. M. Dizaji, M. Maerefat and S. Rahgozar, Estimation of carotid artery pulse wave velocity by doppler ultrasonography,, J. Tehran Heart Cent, 4 (2009), 91. Google Scholar

[18]

J. T. Dodge, B. G. Brown, E. L. Bolson and H. T. Dodge, Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation,, Circulation, 86 (1992), 232. Google Scholar

[19]

J. Donea, "Arbitrary Lagrangian-Eulerian Finite Element Methods, In: Computational Methods for Transient Analysis,", North-Holland, (1983). Google Scholar

[20]

A. M. Fallon, L. P. Dassi, U. M. Marzec, S. R. Hanson and A. P. Yoganathan, Procoagulant properties of flow fields in stenotic and expansive orifices,, Ann. Biomed. Eng., 36 (2008), 1. Google Scholar

[21]

L. Formaggia, A. Quarteroni and A. Veneziani, "Cardiovascular Mathematics,", Springer-Verlag Italia, (2009). doi: 10.1007/978-88-470-1152-6. Google Scholar

[22]

Y. C. Fung, "Biomechanics: Circulation,", Second Edition. Springer-Verlag, (1984). Google Scholar

[23]

R. Glowinski, "Finite Element Methods for Incompressible Viscous Flow,", in, 9 (2003). Google Scholar

[24]

G. Guidoboni, R. Glowinski, N. Cavallini and S. Čanić, Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow,, J. Comput. Phys., 228 (2009), 6916. doi: 10.1016/j.jcp.2009.06.007. Google Scholar

[25]

T. Hozumi, K. Yoshida, T. Akasaka, Y. Asami, Y. Kanzaki, Y. Ueda, A. Yamamuro, T. Takagi and J. Yoshikawa, Value of acceleration flow and the prestenotic to stenotic coronary flow velocity ratio by transthoracic color Doppler echocardiography in noninvasive diagnosis of restenosis after percutaneous transluminal coronary angioplasty,, J. Am. Coll. Cardiol., 35 (2000), 164. Google Scholar

[26]

T. J. R. Hughes, W. K. Liu and T. K. Zimmermann, Lagrangian-eulerian finite element formulation for incompressible viscous flows,, Comput. Methods Appl. Mech. Eng., 29 (1981), 329. doi: 10.1016/0045-7825(81)90049-9. Google Scholar

[27]

J. D. Humphrey and S. L. Delange, "An Introduction to Biomechanics: Solids and Fluids, Analysis and Design,", Springer-Verlag, (2004). Google Scholar

[28]

J. D. Humphrey, "Cardiovascular Solid Mechanics: Cells, Tissues, and Organs,", Springer-Verlag, (2002). Google Scholar

[29]

E. L. Johnson, P. G. Yock, V. K. Hargrave, J. P. Srebro, S. M. Manubens, W. Seitz and T. A. Ports, Assessment of severity of coronary stenoses using a Doppler catheter. Validation of a method based on the continuity equation,, Circulation, 80 (1989), 625. Google Scholar

[30]

M. Juonala, M. J. Jarvisalo, N. Maki-Torkko, M. Kahonen, J. S. A. Viikari and O. T. Raitakari, Risk factors identified in childhood and decreased carotid artery elasticity in adulthood: The cardiovascular risk in young finns study,, Circulation, 112 (2005), 1486. Google Scholar

[31]

J. Krejza, M. Arkuszewski, S. E. Kasner, J. Weigele, A. Ustymowicz, R. W. Hurst, B. L. Cucchiara and S. R. Messe, Carotid artery diameter in men and women and the relation to body and neck size,, Stroke, 37 (2006), 1103. Google Scholar

[32]

V. S. Lee, B. S. Hertzberg, M. A. Kliewer and B. A. Carroll, Assessment of stenosis: Implications of variability of Doppler measurements in normal-appearing carotid arteries,, Radiology, 212 (1999), 493. Google Scholar

[33]

A. Leuprecht, K. Perktold, M. Prosi, T. Berk, W. Trubel and H. Schima, Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts,, J. Biomech., 35 (2002), 225. Google Scholar

[34]

R. A. Levine, A. Jimoh, E. G. Cape, S. McMillan, A. P. Yoganathan and A. E. Weyman, Pressure recovery distal to a stenosis: Potential cause of gradient "Overestimation'' by doppler echocardiography,, J. Am. Coll. Cardiol., 13 (1989), 706. Google Scholar

[35]

A. Manzoni1, A. Quarteroni and G. Rozza, Model reduction techniques for fast blood flow simulation in parametrized geometries,, International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 604. doi: 10.1002/cnm.1465. Google Scholar

[36]

K. M. J. Marques, H. J. Spruijt, C. Boer, N. Westerhof, C. A. Visser and F. C. Visser, The diastolic flow-pressure gradient relation in coronary stenoses in humans,, J. Am. Coll. Cardiol., 39 (2002), 1630. Google Scholar

[37]

J. M. Meinders, L. Kornet and A. P. G. Hoeks, Assessment of spatial inhomogeneities in intima media thickness along an arterial segment using its dynamic behavior,, Am. J. Physiol. Heart Circ. Physiol., 285 (2003). Google Scholar

[38]

M. Mokhtari-Dizaji, M. Montazeri and H. Saberi, Differentiation of mild and severe stenosis with motion estimation in ultrasound images,, Ultrasound Med. Biol., 32 (2006), 1493. Google Scholar

[39]

W. W. Nichols and F. O. R. Michael, "McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles,", Hodder Arnold London, (2005). Google Scholar

[40]

M. Persson, Å. Rydén Ahlgren, T. Jansson, A. Eriksson, H. W. Persson and K. Lindstrom, A new non-invasive ultrasonic method for simultaneous measurements of longitudinal and radial arterial wall movements: First in vivo trial,, Clin. Physiol. Funct. Imaging, 23 (2003), 247. Google Scholar

[41]

R. A. Ribeiro, J. A. S. Ribeiro, O. A. Rodrigues Filho, A. G. Caetano and V. P. S. Fazan, Common carotid artery bifurcation levels related to clinical relevant anatomical landmarks,, Int. J. Morphol., 24 (2006), 413. Google Scholar

[42]

E. M. Rohren, M. A. Kliewer, B. A. Carroll and B. S. Hertzberg, A spectrum of doppler waveforms in the carotid and vertebral arteries,, AJR. Am. J. Roentgenol., 181 (2003), 1695. Google Scholar

[43]

S. K. Samijo, J. M. Willigers, R. Barkhuysen, P. Kitslaar, R. S. Reneman, P. J. Brands and A. P. G. Hoeks, Wall shear stress in the human common carotid artery as function of age and gender,, Cardiovascular Research, 39 (1998), 515. Google Scholar

[44]

S. Svedlund and L. M. Gan, Longitudinal common carotid artery wall motion is associated with plaque burden in man and mouse,, Atherosclerosis, 217 (2011), 120. Google Scholar

[45]

S. Svedlund and L. M. Gan, Longitudinal wall motion of the common carotid artery can be assessed by velocity vector imaging,, Clin. Physiol. Funct. Imaging, 31 (2011), 32. Google Scholar

[46]

J. Tambača, S. Čanić and A. Mikelić, Effective model of the fluid flow through elastic tube with variable radius,, Grazer Math. Ber., 348 (2005), 91. Google Scholar

[47]

E. M. Urbina, S. R. Srinivasan, R. L. Kieltyka, R. Tang, M. G. Bond, W. Chen and G. S. Berenson, Correlates of carotid artery stiffness in young adults: The Bogalusa heart study,, Atherosclerosis, 176 (2004), 157. Google Scholar

[48]

R. K. Warriner, K. W. Johnston and R. S. C. Cobbold, A viscoelastic model of arterial wall motion in pulsatile flow: Implications for Doppler ultrasound clutter assessment,, Physiol. Meas., 29 (2008), 157. Google Scholar

[49]

I. Weinberg., "Carotid Duplex Protocol,", Vascular Medicine, (2012). Google Scholar

[50]

J. Wu, B. Min Yun, A. M. Fallon, S. R. Hanson, C. K. Aidun and A. P. Yoganathan, Numerical investigation of the effects of channel geometry on platelet activation and blood damage,, Ann. Biomed. Eng., 39 (2011), 897. Google Scholar

show all references

References:
[1]

Å. R. Ahlgren, M. Cinthio, S. Steen, H. W. Persson, T. Sjöberg and K. Lindström, Effects of adrenaline on longitudinal arterial wall movements and resulting intramural shear strain: A first report,, Clin. Physiol. Funct. Imaging, 29 (2009), 353. Google Scholar

[2]

R. L. Armentano, J. G. Barra, J. Levenson, A. Simon and R. H. Pichel, Arterial wall mechanics in conscious dogs: Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior,, Circulation Research, 76 (1995), 468. Google Scholar

[3]

R. Armentano, J. L. Megnien, A. Simon, F. Bellenfant, J. Barra and J. Levenson, Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans,, Hypertension, 26 (1995), 48. Google Scholar

[4]

S. Badia, F. Nobile and C. Vergara, Fluid-structure partitioned procedures based on Robin transmission conditions,, J. Comput. Phys., 227 (2008), 7027. doi: 10.1016/j.jcp.2008.04.006. Google Scholar

[5]

S. Badia, A. Quaini and A. Quarteroni, Splitting methods based on algebraic factorization for fluid-structure interaction,, SIAM J. Sci. Comput., 30 (2008), 1778. doi: 10.1137/070680497. Google Scholar

[6]

J. Bouthier, A. Benetos, A. Simon, J. Levenson and M. Safar, Pulsed Doppler evaluation of diameter, blood velocity and blood flow of common carotid artery in sustained essential hypertension,, J. Cardiovasc. Pharmacol., 7 (1985). Google Scholar

[7]

M. Bukač, S. Čanić, R. Glowinski, J. Tambača and A. Quaini, Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement,, Journal of Computational Physics. DOI: http://dx.doi.org/10.1016/j.bbr.2011.03.031 (2012)., (2012). Google Scholar

[8]

B. E. Bulwer and J. M. Rivero, "Echocardiography Pocket Guide: The Transthoracic Examination,", Jones & Bartlett Learning, (2010). Google Scholar

[9]

C. Bussy, P. Boutouyrie, P. Lacolley, P. Challande and S. Laurent, Intrinsic stiffness of the carotid arterial wall material in essential hypertensives,, Hypertension, 35 (2000), 1049. Google Scholar

[10]

S. Čanić, J. Tambaca, G. Guidoboni, A. Mikelic, C. J. Hartley and D. Rosenstrauch, Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow,, SIAM J. Appl. Math., 67 (2006), 164. doi: 10.1137/060651562. Google Scholar

[11]

S. Čanić, M. Bukač and B. Muha, Stability of the kinematically coupled $\beta$-scheme for simulation of fluid-structure interaction problems in hemodynamics,, Submitted, (2012). Google Scholar

[12]

P. Ciarlet, "Mathematical Elasticity: Theory of Shells,", North-Holland, (2000). Google Scholar

[13]

M. Cinthio, Å. R. Ahlgren, J. Bergkvist, T. Jansson, H. W. Persson and K. Lindstrom, Longitudinal movements and resulting shear strain of the arterial wall,, Am. J. Physiol. Heart Circ. Physiol., 291 (2006). Google Scholar

[14]

R. S. C. Cobbold, "Foundations of Biomedical Ultrasound,", Oxford University Press, (2007). Google Scholar

[15]

CREATIS., "Biomedical Imaging Laboratory,", University of Lyon-INSA, (2011). Google Scholar

[16]

V. Deplano and M. Siouffi, Experimental and numerical study of pulsatile flows through stenosis: Wall shear stress analysis,, Journal of Biomechanics, 32 (1999), 1081. Google Scholar

[17]

M. M. Dizaji, M. Maerefat and S. Rahgozar, Estimation of carotid artery pulse wave velocity by doppler ultrasonography,, J. Tehran Heart Cent, 4 (2009), 91. Google Scholar

[18]

J. T. Dodge, B. G. Brown, E. L. Bolson and H. T. Dodge, Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation,, Circulation, 86 (1992), 232. Google Scholar

[19]

J. Donea, "Arbitrary Lagrangian-Eulerian Finite Element Methods, In: Computational Methods for Transient Analysis,", North-Holland, (1983). Google Scholar

[20]

A. M. Fallon, L. P. Dassi, U. M. Marzec, S. R. Hanson and A. P. Yoganathan, Procoagulant properties of flow fields in stenotic and expansive orifices,, Ann. Biomed. Eng., 36 (2008), 1. Google Scholar

[21]

L. Formaggia, A. Quarteroni and A. Veneziani, "Cardiovascular Mathematics,", Springer-Verlag Italia, (2009). doi: 10.1007/978-88-470-1152-6. Google Scholar

[22]

Y. C. Fung, "Biomechanics: Circulation,", Second Edition. Springer-Verlag, (1984). Google Scholar

[23]

R. Glowinski, "Finite Element Methods for Incompressible Viscous Flow,", in, 9 (2003). Google Scholar

[24]

G. Guidoboni, R. Glowinski, N. Cavallini and S. Čanić, Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow,, J. Comput. Phys., 228 (2009), 6916. doi: 10.1016/j.jcp.2009.06.007. Google Scholar

[25]

T. Hozumi, K. Yoshida, T. Akasaka, Y. Asami, Y. Kanzaki, Y. Ueda, A. Yamamuro, T. Takagi and J. Yoshikawa, Value of acceleration flow and the prestenotic to stenotic coronary flow velocity ratio by transthoracic color Doppler echocardiography in noninvasive diagnosis of restenosis after percutaneous transluminal coronary angioplasty,, J. Am. Coll. Cardiol., 35 (2000), 164. Google Scholar

[26]

T. J. R. Hughes, W. K. Liu and T. K. Zimmermann, Lagrangian-eulerian finite element formulation for incompressible viscous flows,, Comput. Methods Appl. Mech. Eng., 29 (1981), 329. doi: 10.1016/0045-7825(81)90049-9. Google Scholar

[27]

J. D. Humphrey and S. L. Delange, "An Introduction to Biomechanics: Solids and Fluids, Analysis and Design,", Springer-Verlag, (2004). Google Scholar

[28]

J. D. Humphrey, "Cardiovascular Solid Mechanics: Cells, Tissues, and Organs,", Springer-Verlag, (2002). Google Scholar

[29]

E. L. Johnson, P. G. Yock, V. K. Hargrave, J. P. Srebro, S. M. Manubens, W. Seitz and T. A. Ports, Assessment of severity of coronary stenoses using a Doppler catheter. Validation of a method based on the continuity equation,, Circulation, 80 (1989), 625. Google Scholar

[30]

M. Juonala, M. J. Jarvisalo, N. Maki-Torkko, M. Kahonen, J. S. A. Viikari and O. T. Raitakari, Risk factors identified in childhood and decreased carotid artery elasticity in adulthood: The cardiovascular risk in young finns study,, Circulation, 112 (2005), 1486. Google Scholar

[31]

J. Krejza, M. Arkuszewski, S. E. Kasner, J. Weigele, A. Ustymowicz, R. W. Hurst, B. L. Cucchiara and S. R. Messe, Carotid artery diameter in men and women and the relation to body and neck size,, Stroke, 37 (2006), 1103. Google Scholar

[32]

V. S. Lee, B. S. Hertzberg, M. A. Kliewer and B. A. Carroll, Assessment of stenosis: Implications of variability of Doppler measurements in normal-appearing carotid arteries,, Radiology, 212 (1999), 493. Google Scholar

[33]

A. Leuprecht, K. Perktold, M. Prosi, T. Berk, W. Trubel and H. Schima, Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts,, J. Biomech., 35 (2002), 225. Google Scholar

[34]

R. A. Levine, A. Jimoh, E. G. Cape, S. McMillan, A. P. Yoganathan and A. E. Weyman, Pressure recovery distal to a stenosis: Potential cause of gradient "Overestimation'' by doppler echocardiography,, J. Am. Coll. Cardiol., 13 (1989), 706. Google Scholar

[35]

A. Manzoni1, A. Quarteroni and G. Rozza, Model reduction techniques for fast blood flow simulation in parametrized geometries,, International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 604. doi: 10.1002/cnm.1465. Google Scholar

[36]

K. M. J. Marques, H. J. Spruijt, C. Boer, N. Westerhof, C. A. Visser and F. C. Visser, The diastolic flow-pressure gradient relation in coronary stenoses in humans,, J. Am. Coll. Cardiol., 39 (2002), 1630. Google Scholar

[37]

J. M. Meinders, L. Kornet and A. P. G. Hoeks, Assessment of spatial inhomogeneities in intima media thickness along an arterial segment using its dynamic behavior,, Am. J. Physiol. Heart Circ. Physiol., 285 (2003). Google Scholar

[38]

M. Mokhtari-Dizaji, M. Montazeri and H. Saberi, Differentiation of mild and severe stenosis with motion estimation in ultrasound images,, Ultrasound Med. Biol., 32 (2006), 1493. Google Scholar

[39]

W. W. Nichols and F. O. R. Michael, "McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles,", Hodder Arnold London, (2005). Google Scholar

[40]

M. Persson, Å. Rydén Ahlgren, T. Jansson, A. Eriksson, H. W. Persson and K. Lindstrom, A new non-invasive ultrasonic method for simultaneous measurements of longitudinal and radial arterial wall movements: First in vivo trial,, Clin. Physiol. Funct. Imaging, 23 (2003), 247. Google Scholar

[41]

R. A. Ribeiro, J. A. S. Ribeiro, O. A. Rodrigues Filho, A. G. Caetano and V. P. S. Fazan, Common carotid artery bifurcation levels related to clinical relevant anatomical landmarks,, Int. J. Morphol., 24 (2006), 413. Google Scholar

[42]

E. M. Rohren, M. A. Kliewer, B. A. Carroll and B. S. Hertzberg, A spectrum of doppler waveforms in the carotid and vertebral arteries,, AJR. Am. J. Roentgenol., 181 (2003), 1695. Google Scholar

[43]

S. K. Samijo, J. M. Willigers, R. Barkhuysen, P. Kitslaar, R. S. Reneman, P. J. Brands and A. P. G. Hoeks, Wall shear stress in the human common carotid artery as function of age and gender,, Cardiovascular Research, 39 (1998), 515. Google Scholar

[44]

S. Svedlund and L. M. Gan, Longitudinal common carotid artery wall motion is associated with plaque burden in man and mouse,, Atherosclerosis, 217 (2011), 120. Google Scholar

[45]

S. Svedlund and L. M. Gan, Longitudinal wall motion of the common carotid artery can be assessed by velocity vector imaging,, Clin. Physiol. Funct. Imaging, 31 (2011), 32. Google Scholar

[46]

J. Tambača, S. Čanić and A. Mikelić, Effective model of the fluid flow through elastic tube with variable radius,, Grazer Math. Ber., 348 (2005), 91. Google Scholar

[47]

E. M. Urbina, S. R. Srinivasan, R. L. Kieltyka, R. Tang, M. G. Bond, W. Chen and G. S. Berenson, Correlates of carotid artery stiffness in young adults: The Bogalusa heart study,, Atherosclerosis, 176 (2004), 157. Google Scholar

[48]

R. K. Warriner, K. W. Johnston and R. S. C. Cobbold, A viscoelastic model of arterial wall motion in pulsatile flow: Implications for Doppler ultrasound clutter assessment,, Physiol. Meas., 29 (2008), 157. Google Scholar

[49]

I. Weinberg., "Carotid Duplex Protocol,", Vascular Medicine, (2012). Google Scholar

[50]

J. Wu, B. Min Yun, A. M. Fallon, S. R. Hanson, C. K. Aidun and A. P. Yoganathan, Numerical investigation of the effects of channel geometry on platelet activation and blood damage,, Ann. Biomed. Eng., 39 (2011), 897. Google Scholar

[1]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[2]

Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199

[3]

Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks & Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787

[4]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

[5]

George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations & Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563

[6]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[7]

Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks & Heterogeneous Media, 2007, 2 (3) : 397-423. doi: 10.3934/nhm.2007.2.397

[8]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[9]

Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269

[10]

Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102

[11]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[12]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[13]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[14]

Igor Chueshov, Björn Schmalfuß. Stochastic dynamics in a fluid--plate interaction model with the only longitudinal deformations of the plate. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 833-852. doi: 10.3934/dcdsb.2015.20.833

[15]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1133-1148. doi: 10.3934/dcdss.2014.7.1133

[16]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[17]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[18]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NON-LINEAR BEAM Fluid structure interaction problem with changing thickness non-linear beam. Conference Publications, 2011, 2011 (Special) : 813-823. doi: 10.3934/proc.2011.2011.813

[19]

Irena Lasiecka, Roberto Triggiani. Heat--structure interaction with viscoelastic damping: Analyticity with sharp analytic sector, exponential decay, fractional powers. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1515-1543. doi: 10.3934/cpaa.2016001

[20]

A. Jiménez-Casas, Mario Castro, Justine Yassapan. Finite-dimensional behavior in a thermosyphon with a viscoelastic fluid. Conference Publications, 2013, 2013 (special) : 375-384. doi: 10.3934/proc.2013.2013.375

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]