• Previous Article
    Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey
  • MBE Home
  • This Issue
  • Next Article
    Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation
2013, 10(2): 319-344. doi: 10.3934/mbe.2013.10.319

Modeling of the kinetics of vitamin D$_3$ in osteoblastic cells

1. 

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, United States, United States, United States

Received  May 2012 Revised  November 2012 Published  January 2013

A one-dimensional model for the transport of vitamin D$_3$ in an osteoblast cell is proposed, from its entry through the membrane to its activation of RANKL synthesis in the nucleus. In the membrane and cytoplasm, the transport of D$_3$ and RANKL is described by a diffusion process, while their interaction in the nucleus is modeled by a reaction-diffusion process. For the latter, an integral equation involving the boundary conditions, as well as an asymptotic solution in the regime of small concentrations, are derived. Numerical simulations are also performed to investigate the kinetics of D$_3$ and RANKL through the entire cell. Comparison between the asymptotics and numerics in the nucleus shows an excellent agreement. To our knowledge, this is the first time, albeit using a simple model, a description of the complete passage of D$_3$ through the cell membrane, the cytoplasm, into the cell nucleus, and finally the production of RANKL with its passage to the exterior of the cell, has been modeled.
Citation: Robert P. Gilbert, Philippe Guyenne, Ying Liu. Modeling of the kinetics of vitamin D$_3$ in osteoblastic cells. Mathematical Biosciences & Engineering, 2013, 10 (2) : 319-344. doi: 10.3934/mbe.2013.10.319
References:
[1]

A. Atri, J. Amundson, D. Clapham and J. Sneyd, A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis Oocyte, Biophys. J., 65 (1993), 1727-1739.

[2]

F. Bronner, Cytoplasmic transport of calcium and other inorganic ions, Comp. Biochem. Physiol., 115B (1996), 313-317.

[3]

J. Buchanan, R. P. Gilbert and M. J. Ou, The kinetics of vitamin $D_3$ in the osteoblastic cell, Submitted to J. Theor. Biol., (2012).

[4]

E. M. Costa and D. Feldman, Measurement of 1,25-Dihydroxyvitamin D3 receptor turnover by dense amino acid labeling: Changes during receptor up-regulation by vitamin D metabolites, Endocrinology, 120 (1987), 1173-1178.

[5]

M. C. Farach-Carson and P. J. Davis, Steroid hormone interactions with target cells: Cross talk between membrane and nuclear pathways, J. Pharm. Exp. Therap., 307 (2003), 839-845.

[6]

R. Gilbert, A. Panasenko and A. Vasilic, Acoustic Propagation in a Random Saturated Medium: The Monophasic Case, Math. Mehods Appl. Sciences, 33 (2010), 2206-2214.

[7]

K. Hackl and S. Ilic, Application of the multiscale FEM to the modeling of cancellous bone, Biomechan. Model. Mechanobiol., 9 (2010), 87-102.

[8]

V. V. Jikov, S. M. Kozlov and O.A. Oleinik, "Homogenization of Differential Operators and Integral Functionals," Springer, Berlin 1994.

[9]

J. Keener and J. Sneyd, "Mathematical Physiology," Springer, Berlin, 1998.

[10]

S. V. Komarova, R. J. Smith, S. J. Dixon, S. M. Sims and L. M. Wahl, Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling, Bone, 33 (2003), 206-215.

[11]

D. L. Lacey, E. Timms, h.-L. Tan, M. J. Kelley, C. R. Dunstan, T. Burgess, R. Elliott, A. Columbero, G. Elliott, S. Scully, H. Hsu, J. Sullivan, N. Hawkins, E. Davy, C. Capparelli, A. Eli, Y. X. Qian, S. Kaufman, I. Sarosi, V. Shalhoub, G. Senaldi, J. Guo, J. Delaney and W. J. Boyle, Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation, Cell, 93 (1998), 165-176.

[12]

D. A. Lauffenburger and J. Linderman, "Receptors: Models for Binding, Trafficking and Signaling," Oxford University Press, New York, 1996.

[13]

V. Lemaire, F. L. Tobin, L. D. Greller, C. R. Cho and L. J. and Suva, Modeling the interactions between osteoblast and osteoclast activities in bone remodeling, J. Theor. Biol., 229 (2004), 293-309. doi: 10.1016/j.jtbi.2004.03.023.

[14]

I. Nemere, 24,25-Dihydroxyvitamin D3 suppresses the rapid actions of 1,25 Dihydroxyvitamin D3 and parathyroid hormone on calcium transport in chick intestine, Bone Miner. Res., 14 (1999), 1543-1549.

[15]

I. Nemere, N. Garbi, G. J. Hammerling and R. C. Khanal, Intestinal cell calcium uptake and the targeted knockout of the 1,25D3-MARRS (Membrane-associated, rapid response steroid-binding) receptor/PDIA3/Erp57, J. Biol. Chem., 285 (2010), 31859-31866.

[16]

I. Nemere, R. J. Pietras and P. F. Blackmore, Membrane receptors for membrane hormones: Signal transduction and physiological significance, J. Cell Biochem., 88 (2003), 438-445.

[17]

A. W. Norman, "Rapid Biological Responses Mediated by $1\alpha,25$-Dihydroxyvitamin D$_3$," In Vitamin D (D. Feldman and F. H. Glorieux and J. W. Pike), Academic Press, New York, 1997.

[18]

I. Novak, P. Kraikivski and B. Slepchenko, Diffusion in cytoplasm: Effects of excluded volume due to internal membranes and cytoskeletal structures, Biophys. J., 97 (2009), 758-767.

[19]

I. L. Novak, F. Gao, P. Kraikivski and B. Slepchenko, B. M. Diffusion amid random overlapping obstacles: Similarities, invariants, aproximations, J. Chem. Phys., 134 (2011), 154104.

[20]

J. W. Pike, "The Vitamin D Receptor and Its Gene," In Vitamin D (D. Feldman, F. H. Glorieux and J. W. Pike), Academic Press, New York, 1997, 105-125.

[21]

W. S. Simonet, D. L. Lacey, C. R. Dunstan, M. Kelley, M.-S. Chang, R. Lothy, H. Q. Nguyen, S. Wooden, L. Bennett, T. Boone, G. Shimamoto, M. DeRose, R. Elliott, A. Columbero, H.-L. Tan, G. Trail, J. Sullivan, E. Davy, N. Bucay, L. Renshaw-Gregg, T. M. Hughes, D. Hill, W. Pattison, P. Campbell, S. Sander, G. Van, J. Tarpley, P. Derby, R. Lee and W. J. Boyle, Osteoprotegerin: A novel secreted protein involved in the regulation of bone density, Cell, 89 (1997), 309-319.

[22]

P. Slepchenko, I. Semenova, I. Zaliopin. and V. Rodianaov, Switching of membrane organelles between cytoskeletal transport systems is determined by regulation of the microtubule-based transport, J. Cell Biol., 179 (2007), 635-641.

[23]

G. K. Witfield, P. W. Jurutka, C. A. Hausler, J.-C. Hsieh, T. K. Barthel, E. T. Jacobs, C. E. Dominguez, M. L. Thatcher and M. R. Hausler, "Nuclear Vitamin D Receptor: Control of Gene Transcription, and Novel Bioactions," In Vitamin D (D. Feldman, F. H. Glorieux and J. W. Pike), Academic Press, New York, 1997, 219-261.

show all references

References:
[1]

A. Atri, J. Amundson, D. Clapham and J. Sneyd, A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis Oocyte, Biophys. J., 65 (1993), 1727-1739.

[2]

F. Bronner, Cytoplasmic transport of calcium and other inorganic ions, Comp. Biochem. Physiol., 115B (1996), 313-317.

[3]

J. Buchanan, R. P. Gilbert and M. J. Ou, The kinetics of vitamin $D_3$ in the osteoblastic cell, Submitted to J. Theor. Biol., (2012).

[4]

E. M. Costa and D. Feldman, Measurement of 1,25-Dihydroxyvitamin D3 receptor turnover by dense amino acid labeling: Changes during receptor up-regulation by vitamin D metabolites, Endocrinology, 120 (1987), 1173-1178.

[5]

M. C. Farach-Carson and P. J. Davis, Steroid hormone interactions with target cells: Cross talk between membrane and nuclear pathways, J. Pharm. Exp. Therap., 307 (2003), 839-845.

[6]

R. Gilbert, A. Panasenko and A. Vasilic, Acoustic Propagation in a Random Saturated Medium: The Monophasic Case, Math. Mehods Appl. Sciences, 33 (2010), 2206-2214.

[7]

K. Hackl and S. Ilic, Application of the multiscale FEM to the modeling of cancellous bone, Biomechan. Model. Mechanobiol., 9 (2010), 87-102.

[8]

V. V. Jikov, S. M. Kozlov and O.A. Oleinik, "Homogenization of Differential Operators and Integral Functionals," Springer, Berlin 1994.

[9]

J. Keener and J. Sneyd, "Mathematical Physiology," Springer, Berlin, 1998.

[10]

S. V. Komarova, R. J. Smith, S. J. Dixon, S. M. Sims and L. M. Wahl, Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling, Bone, 33 (2003), 206-215.

[11]

D. L. Lacey, E. Timms, h.-L. Tan, M. J. Kelley, C. R. Dunstan, T. Burgess, R. Elliott, A. Columbero, G. Elliott, S. Scully, H. Hsu, J. Sullivan, N. Hawkins, E. Davy, C. Capparelli, A. Eli, Y. X. Qian, S. Kaufman, I. Sarosi, V. Shalhoub, G. Senaldi, J. Guo, J. Delaney and W. J. Boyle, Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation, Cell, 93 (1998), 165-176.

[12]

D. A. Lauffenburger and J. Linderman, "Receptors: Models for Binding, Trafficking and Signaling," Oxford University Press, New York, 1996.

[13]

V. Lemaire, F. L. Tobin, L. D. Greller, C. R. Cho and L. J. and Suva, Modeling the interactions between osteoblast and osteoclast activities in bone remodeling, J. Theor. Biol., 229 (2004), 293-309. doi: 10.1016/j.jtbi.2004.03.023.

[14]

I. Nemere, 24,25-Dihydroxyvitamin D3 suppresses the rapid actions of 1,25 Dihydroxyvitamin D3 and parathyroid hormone on calcium transport in chick intestine, Bone Miner. Res., 14 (1999), 1543-1549.

[15]

I. Nemere, N. Garbi, G. J. Hammerling and R. C. Khanal, Intestinal cell calcium uptake and the targeted knockout of the 1,25D3-MARRS (Membrane-associated, rapid response steroid-binding) receptor/PDIA3/Erp57, J. Biol. Chem., 285 (2010), 31859-31866.

[16]

I. Nemere, R. J. Pietras and P. F. Blackmore, Membrane receptors for membrane hormones: Signal transduction and physiological significance, J. Cell Biochem., 88 (2003), 438-445.

[17]

A. W. Norman, "Rapid Biological Responses Mediated by $1\alpha,25$-Dihydroxyvitamin D$_3$," In Vitamin D (D. Feldman and F. H. Glorieux and J. W. Pike), Academic Press, New York, 1997.

[18]

I. Novak, P. Kraikivski and B. Slepchenko, Diffusion in cytoplasm: Effects of excluded volume due to internal membranes and cytoskeletal structures, Biophys. J., 97 (2009), 758-767.

[19]

I. L. Novak, F. Gao, P. Kraikivski and B. Slepchenko, B. M. Diffusion amid random overlapping obstacles: Similarities, invariants, aproximations, J. Chem. Phys., 134 (2011), 154104.

[20]

J. W. Pike, "The Vitamin D Receptor and Its Gene," In Vitamin D (D. Feldman, F. H. Glorieux and J. W. Pike), Academic Press, New York, 1997, 105-125.

[21]

W. S. Simonet, D. L. Lacey, C. R. Dunstan, M. Kelley, M.-S. Chang, R. Lothy, H. Q. Nguyen, S. Wooden, L. Bennett, T. Boone, G. Shimamoto, M. DeRose, R. Elliott, A. Columbero, H.-L. Tan, G. Trail, J. Sullivan, E. Davy, N. Bucay, L. Renshaw-Gregg, T. M. Hughes, D. Hill, W. Pattison, P. Campbell, S. Sander, G. Van, J. Tarpley, P. Derby, R. Lee and W. J. Boyle, Osteoprotegerin: A novel secreted protein involved in the regulation of bone density, Cell, 89 (1997), 309-319.

[22]

P. Slepchenko, I. Semenova, I. Zaliopin. and V. Rodianaov, Switching of membrane organelles between cytoskeletal transport systems is determined by regulation of the microtubule-based transport, J. Cell Biol., 179 (2007), 635-641.

[23]

G. K. Witfield, P. W. Jurutka, C. A. Hausler, J.-C. Hsieh, T. K. Barthel, E. T. Jacobs, C. E. Dominguez, M. L. Thatcher and M. R. Hausler, "Nuclear Vitamin D Receptor: Control of Gene Transcription, and Novel Bioactions," In Vitamin D (D. Feldman, F. H. Glorieux and J. W. Pike), Academic Press, New York, 1997, 219-261.

[1]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4907-4926. doi: 10.3934/dcdsb.2020319

[3]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[4]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[5]

Hirotoshi Kuroda, Noriaki Yamazaki. Approximating problems of vectorial singular diffusion equations with inhomogeneous terms and numerical simulations. Conference Publications, 2009, 2009 (Special) : 486-495. doi: 10.3934/proc.2009.2009.486

[6]

Yuliya Gorb, Dukjin Nam, Alexei Novikov. Numerical simulations of diffusion in cellular flows at high Péclet numbers. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 75-92. doi: 10.3934/dcdsb.2011.15.75

[7]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[8]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[9]

Zhiting Xu, Yingying Zhao. A reaction-diffusion model of dengue transmission. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2993-3018. doi: 10.3934/dcdsb.2014.19.2993

[10]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[11]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[12]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[13]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083

[14]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure and Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[15]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[16]

Feng-Bin Wang. A periodic reaction-diffusion model with a quiescent stage. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 283-295. doi: 10.3934/dcdsb.2012.17.283

[17]

Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085

[18]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[19]

Wilhelm Stannat, Lukas Wessels. Deterministic control of stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2021, 10 (4) : 701-722. doi: 10.3934/eect.2020087

[20]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control and Related Fields, 2022, 12 (1) : 147-168. doi: 10.3934/mcrf.2021005

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]