Citation: |
[1] |
S. A. Agarwala, "New Applications of Cancer Immunotherapy," S. A. Agarwala (Guest Editor), Sem. Onc., Special Issue 29-3 Suppl. 7. 2003. |
[2] |
R. Barbuti, G. Caravagna, A. Maggiolo-Schettini and P. Milazzo, Delay stochastic simulation of biological systems: A purely delayed approach, C.Priami et al.(Eds.): Trans. Comp. Sys. Bio. XIII, LNBI, 6575 (2011), 61-84. |
[3] |
M. Barrio, K. Burrage, A. Leier and T. Tian, Oscillatory regulation of Hes1: Discrete stochastic delay modelling and simulation, PLoS Comp. Bio., (9), 2 (2006). |
[4] |
N. Bellomo and G. Forni, Complex multicellular systems and Immune competition: New paradigms looking for a mathematical theory, Curr. Top. Dev. Bio., 81 (2008), 485-502.doi: 10.1016/S0070-2153(07)81017-9. |
[5] |
E. Beretta, V. Capasso and F. Rinaldi, Global stability results for a generalized Lotka-Volterra system with distributed delays, J. Math. Bio., 26 (1988), 661-688. |
[6] |
I. Bleumer, E. Oosterwijk, P. de Mulder and P. F. Mulders, Immunotherapy for renal cell carcinoma, Europ. Urol., 44 (2003), 65-75.doi: 10.1016/S0302-2838(03)00191-X. |
[7] |
N. Blumberg, C. Chuang-Stein and J. M. Heal, The relationship of blood transfusion, tumor staging and cancer recurrence, Transf., 30 (1990), 291-294.doi: 10.1046/j.1537-2995.1990.30490273432.x. |
[8] |
K. B. Blyuss and Y. N. Kyrychko, Stability and bifurcations in an epidemic model with varying immunity period, Bull. Math. Bio., 72 (2010), 490-505.doi: 10.1007/s11538-009-9458-y. |
[9] |
L. Bortolussi, Automata and (stochastic) programs. The hybrid automata lattice of a stochastic program, J. Log. Comp., (2011).doi: 10.1093/logcom/exr045. |
[10] |
L. Bortolussi and A. Policriti, The importance of being (a little bit) discrete, ENTCS, 229 (2009), 75-92. |
[11] |
M. Bravetti and R. Gorrieri, The theory of interactive generalized semi-Markov processes, Theoret. Comp. Sci., 282 (2002), 5-32. |
[12] |
N. Burić and D. Todorović, Dynamics of delay-differential equations modelling immunology of tumor growth, Cha. Sol. Fract., 13 (2002), 645-655. |
[13] |
G. Caravagna, "Formal Modeling and Simulation of Biological Systems With Delays," Ph.D. Thesis, Universit\`a di Pisa. 2011. |
[14] |
G. Caravagna, A. d'Onofrio, P. Milazzo and R. Barbuti, Antitumour Immune surveillance through stochastic oscillations, J. Th. Biology, 265 (2010), 336-345. |
[15] |
G. Caravagna, A. Graudenzi, M.Antoniotti, G. Mauri and A. d'Onofrio, Effects of delayed Immune-response in tumor Immune-system interplay, Proc. of the First Int. Work. on Hybrid Systems and Biology (HSB), EPTCS, 92 (2012), 106-121. |
[16] |
G. Caravagna and J. Hillston, Bio-PEPAd: A non-Markovian extension of Bio-PEPA, Th. Comp. Sc., 419 (2012), 26-49. |
[17] |
G. Caravagna, G. Mauri and A. d'Onofrio, The interplay of intrinsic and extrinsic bounded noises in genetic networks, Submitted. Preprint at http://arxiv.org/abs/1206.1098. |
[18] |
V. Costanza and J. H. Seinfeld, Stochastic sensitivity analysis in chemical kinetics, J. Chem. Phys., 74 (1981), 3852-3858. |
[19] |
D. R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables, Proc. Cambridge Phil. Soc., 51 (1955), 433-440. |
[20] |
F. Crauste, Stability and hopf bifurcation for a first-order delay differential equation with distributed delay, in "Complex Time-Delay Systems: Theory and Applications" (ed. F.M. Atay), Springer, (2010), 263-296. |
[21] |
P. R. D'Argenio, J.-P. Katoen and E. Brinksma, A stochastic automata model and its algebraic approach, Proc. 5th Int. Workshop on Process Algebra and Performance Modeling, CTIT technical reports series 97-14, University of Twente, 1-16. (1997). |
[22] |
C. Damiani and P. Lecca, A novel method for parameter sensitivity analysis of stochastic complex systems, in "Publication on The Microsoft Research - University of Trento Centre for Computational and Systems Biology Technical Reports" 2012. http://www.cosbi.eu/index.php/research/publications?abstract=6546. |
[23] |
A. d'Onofrio, Tumor-Immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy, Math. Mod. Meth. App. Sci., 16 (2006), 1375-1401. |
[24] |
A. d'Onofrio, Tumor evasion from Immune system control: Strategies of a MISS to become a MASS, Ch. Sol. Fract., 31 (2007), 261-268. |
[25] |
A. d'Onofrio and P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases, J. Th. Bio., 256 (2009), 473-478. |
[26] |
A. d'Onofrio, On the interaction between the Immune system and an exponentially replicating pathogen, Math. Biosc. Eng., 7 (2010), 579-602. |
[27] |
A. d'Onofrio, G. Caravagna and R. Barbuti, Fine-tuning anti-tumor immunotherapies via stochastic simulations, BMC Bioinformatics, (4), 13 (2012). |
[28] |
A. d'Onofrio, Tumour evasion from Immune system control as bounded-noise induced transition, Phys. Rev. E, 81 (2010), Art. n. 021923. |
[29] |
A. d'Onofrio and A. Ciancio, A simple biophysical model of tumor evasion form Immune control, Phys. Rev. E, 84 (2011), Art. n. 031910. |
[30] |
M. Al Tameemi, M. Chaplain and A. d'Onofrio, Evasion of tumours from the control of the Immune system: consequences of brief encounters, Biology Direct, in press. 2012. |
[31] |
A. d'Onofrio, F. Gatti, P. Cerrai and L. Freschi, Delay-induced oscillatory dynamics of Tumor-Immune system interaction, Math. Comp. Mod., 51 (2010), 572-591. |
[32] |
H. H. A. Davis, Piecewise deterministic Markov processes: a general class of non-diffusion stochastic models, J. Roy. Stat. So. Series B, 46 (1984), 353-388. |
[33] |
R. J. DeBoer, P. Hogeweg, F. Hub, J. Dullens, R. A. DeWeger and W. DenOtter, Macrophage T Lymphocyte interactions in the anti-tumor Immune response: A mathematical model, J. Immunol., 134 (1985), 2748-2758. |
[34] |
L. G. De Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated Immune response to tumor growth, Cancer Res., 65 (2005), 7950-7958. |
[35] |
V. T. De Vito Jr., J. Hellman and S. A. Rosenberg, "Cancer: Principles and Practice of Oncology," J. P. Lippincott. 2005. |
[36] |
G. P. Dunn, L. J. Old and R. D. Schreiber, The three ES of Cancer Immunoediting, Ann. Rev. of Immun., 22 (2004), 322-360. |
[37] |
P. Ehrlich, Ueber den jetzigen Stand der Karzinomforschung, Ned. Tijdschr. Geneeskd., 5 (1909), 273-290. |
[38] |
H. Enderling, L. Hlatky and P. Hahnfeldt, Immunoediting: Evidence of the multifaceted role of the immune system in self-metastatic tumor growth, Theoretical Biology and Medical Modelling, 9 (2012), Art.n. 31. |
[39] |
M. Farkas, "Periodic Motions," Springer-Verlag, Berlin and New York, 1994. |
[40] |
P. Feng, Dynamics of a segmentation clock model with discrete and distributed delays, Int. J. Biomath., 3 (2010), 1-18. |
[41] |
M. Galach, Dynamics of the tumour-Immune system competition: The effect of time delay, Int. J. App. Math. and Comp. Sci., 13 (2003), 395-406. |
[42] |
C. W. Gardiner, "Handbook of Stochastic Methods," (2nd edition). Springer. 1985. |
[43] |
R. Gatti, et al., Cyclic Leukocytosis in Chronic Myelogenous Leukemia: New Perspectives on Pathogenesis and Therapy, Blood, 41 (1973), 771-783. |
[44] |
D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. of Comp. Phys., 22 (1976), 403-434. |
[45] |
D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. of Phys. Chem., 81 (1977), 2340-2361. |
[46] |
P. W. Glynn, On the role of generalized semi-markov processes in simulation output analysis, Proc. of the 15th conference on Winter simulation, 1 (1983), 39-44. |
[47] |
R. Gunawan, Y. Cao, L. Petzold and F. J. Doyle III, Sensitivity analysis of discrete stochastic systems, Biophys. J., 88 (2005), 2530-2540. |
[48] |
S. A. Gourley and S.Ruan, Dynamics of the diffusive Nicholson blowflies equation with distributed delay, Proc. Roy. Soc. Edinburgh A, 130 (2000), 1275-1291. |
[49] |
Y. Han and Y. Song, Stability and Hopf bifurcation in a three-neuron unidirectional ring with distributed delays, Nonlin. Dyn., 69 (2011), 357-370. |
[50] |
R. Jessop, "Stability and Hopf Bifurcation Analysis of Hopfield Neural Networks with a General Distribution of Delays," University of Waterloo, available at http://uwspace.uwaterloo.ca/bitstream/10012/6403/1/Jessop_Raluca.pdf. 2011. |
[51] |
C. H. June, Adoptive T cell therapy for cancer in the clinic, J. Clin. Invest., 117 (2007), 1466-1476. |
[52] |
J. M. Kaminski, J. B. Summers, M. B. Ward, M. R. Huber and B. Minev, Immunotherapy and prostate cancer, Canc. Treat. Rev., 29 (2004), 199-209. |
[53] |
B. J. Kennedy, Cyclic leukocyte oscillations in chronic myelogenous leukemia during hydroxyurea therapy, Blood, 35 (1970), 751-760. |
[54] |
D. Kirschner, J. C. Arciero and T. L. Jackson, A mathematical model of tumor-Immune evasion and siRNA treatment, Discr. Cont. Dyn. Systems, 4 (2004), 39-58. |
[55] |
D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-Immune interaction, J. Math. Biol., 37 (1998), 235-252. |
[56] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Academic Press, 1993. |
[57] |
Y. Kuang, Delay differential equations, Sourcebook in Theoretical Ecology, Hastings and Gross ed., University of California Press, 2011. |
[58] |
K. A. Kuznetsov and G. D. Knott, Modeling tumor regrowth and immunotherapy, Math. Comp. Mod., 33 (2001). |
[59] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321. |
[60] |
M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Sc., 197 (1977), 287-289. |
[61] |
R. M. C. May and A. R. McLean, "Theoretical Ecology: Principles and Applications," Oxford University Press, USA. 2007. |
[62] |
B. C. Mehta and M. B. Agarwal, Cyclic oscillations in leukocyte count in chronic myeloid leukemia, A. Hem. 63 (1980), 68-70. |
[63] |
J. D. Murray, "Mathematical Biology," third edition, Springer Verlag, Heidelberg, 2003. |
[64] |
D. Pardoll, Does the Immune system see tumours as foreign or self?, Ann. Rev. Immun., 21 (2003), 807-839. |
[65] |
D. Rodriguez-Perez, O. Sotolongo-Grau, R. Espinosa, R. O. Sotolongo-Costa, J. A. Santos Miranda and J. C. Antoranz, Assessment of cancer immunotherapy outcome in terms of the Immune response time features, Math. Med. and Bio., 24 (2007), 287-300. |
[66] |
P. Martin, S. Martin, P. Burton and I. Roitt, "Roitt's Essential Immunology," Wiley-Blackwell, 2011. |
[67] |
S. Ruan, Delay differential Eequation in single species dynamics, in "NATO Science Series" (eds. O. Arino, M.L. Hbid and E. Ait Dads), 1 (205), Delay Differential Equations and Applications IV, 477-517. |
[68] |
A. Sohrabi, J. Sandoz, J. S. Spratt and H. C. Polk, Recurrence of breast cancer: Obesity, tumor size, and axillary lymph node metastases, JAMA, 244 (1980), 264-265. |
[69] |
H. Tsao, A. B. Cosimi and A. J. Sober, Ultra-late recurrence (15 years or longer) of cutaneous melanoma, Cancer, 79 (1997), 2361-2370. |
[70] |
A. P. Vicari, G. Caux and G. Trinchieri, Tumor escape from Immune surveillance through dendritic cell inactivation, Sem. Canc. Biol., 2 (2002), 33-42. |
[71] |
M. Villasana and A. Radunskaya, A delay differential equation model for tumour growth, J. of Math. Bio., 47 (2003), 270-294. |
[72] |
H. Vodopick, E. M. Rupp, C. L. Edwards, F. A. Goswitz and J. J. Beauchamp, Spontaneous cyclic leukocytosis and thrombocytosis in chronic granulocytic leukemia, New Engl. J. of Med., 286(1972), 284-290. |
[73] |
T. L. Whiteside, Tumor-induced death of Immune cells: Its mechanisms and consequences, Sem. Canc. Biol., 12 (2002), 43-50. |
[74] |
E. C. Zeeman, Stability of dynamical systems, Nonlin., 1 (1988), 115-155. |
[75] |
C. H. Zhang and Y. Xiang-Ping, Stability and Hopf bifurcations in a delayed predator-prey system with a distributed delay, Int. J. Bifur. Chaos Appl. Sci. Eng., 19 (2009), 2283-2294. |