2013, 10(2): 425-444. doi: 10.3934/mbe.2013.10.425

Mathematical modelling and control of echinococcus in Qinghai province, China

1. 

Department of Mathematics, Shanghai University, 99 Shangda Road, Shanghai 200444, China, China, China

2. 

Department of Mathematical Sciences, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043

Received  June 2012 Revised  December 2012 Published  January 2013

In this paper, two mathematical models, the baseline model and the intervention model, are proposed to study the transmission dynamics of echinococcus. A global forward bifurcation completely characterizes the dynamical behavior of the baseline model. That is, when the basic reproductive number is less than one, the disease-free equilibrium is asymptotically globally stable; when the number is greater than one, the endemic equilibrium is asymptotically globally stable. For the intervention model, however, the basic reproduction number alone is not enough to describe the dynamics, particularly for the case where the basic reproductive number is less then one. The emergence of a backward bifurcation enriches the dynamical behavior of the model. Applying these mathematical models to Qinghai Province, China, we found that the infection of echinococcus is in an endemic state. Furthermore, the model appears to be supportive of human interventions in order to change the landscape of echinococcus infection in this region.
Citation: Liumei Wu, Baojun Song, Wen Du, Jie Lou. Mathematical modelling and control of echinococcus in Qinghai province, China. Mathematical Biosciences & Engineering, 2013, 10 (2) : 425-444. doi: 10.3934/mbe.2013.10.425
References:
[1]

CDC., Parasites and health: Echinococcosis,, DPDx, (2009).   Google Scholar

[2]

S. H. Yu, H. Wang, X. H. Wu, X. Ma, Y. F. Liu, Y. M. Zhao, Y. Morishima and M. Kawanaka, Cystic and alveolar echinococcosis: An epidemiological survey in a Tibetan population in Southeast Qinghai, China,, Jpn.J.Infect.Dis., 61 (2008), 242.   Google Scholar

[3]

Y. R. Yang, M. C. Rosenzvit, L. H. Zhang, J. Z. Zhang and D. P. Mcmanus, Molecular study of echinococcus in west-central China,, Parasitology, 131 (2005), 547.   Google Scholar

[4]

H. Wang, L. Li and B. Zhang etc, Status of human hydatid disease report,, in, (2008), 73.   Google Scholar

[5]

CDC., Web. April (2010)., \url{http://www.chinacdc.cn/jkzt/tfggwssj/zzfb/crbjcykz/201004/t20100420_24967.htm}., ().   Google Scholar

[6]

X. Zhe, Medlive, Web. April (2011)., \url{http://disease.medlive.cn/wiki/entry/10001076_301_0}., ().   Google Scholar

[7]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford Univ. Press, (1991).   Google Scholar

[8]

Y. Yang, Z. Feng, D. Xu, G. Sandland and D. J. Minchella, Evolution of host resistance to parasite infection in the snail-schistosome-human system,, Journal of Mathematical Biology, 65 (2012), 201.  doi: 10.1007/s00285-011-0457-x.  Google Scholar

[9]

C. Castillo-Chavez, Z. Feng and D. Xu, A schistosomiasis model with mating structure and time delay,, Mathematical Biosciences, 211 (2008), 333.  doi: 10.1016/j.mbs.2007.11.001.  Google Scholar

[10]

Z. Feng, A. Eppert, F. Milner and D. Minchella, Estimation of parameters governing the transmission dynamics of schistosomes,, Applied Mathematics Letters, 17 (2004), 1105.  doi: 10.1016/j.aml.2004.02.002.  Google Scholar

[11]

S. G. Ruan, D. M. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission,, Bulletin of Mathematical Biology, 70 (2008), 1098.  doi: 10.1007/s11538-007-9292-z.  Google Scholar

[12]

Z. M. Chen and L. Zou et.al, Mathematical modelling and control of schistosomiasis in Hubei province, China,, Acta Tropica, 115 (2010), 119.   Google Scholar

[13]

P. R. Torgersona, D. H. Williamsb and M. N. Abo-Shehada, Modelling the prevalence of Echinococcus and Taenia species in small ruminants of different ages in northern Jordan,, Veterinary Parasitology, 79 (1998), 35.   Google Scholar

[14]

R. M. Mukbel, P. R. Torgerson and M. N. Abo-Shehada, Prevalence of hydatidosis among donkeys in northern Jordan,, Veterinary Parasitology, 88 (2000), 35.   Google Scholar

[15]

O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases,, Model building analyis and interpretation, (2000).   Google Scholar

[16]

P. van den Driessche and J. Watmough, Reproductive numbers and sub-threshold endemic equilibria for compartmentmodels of disease transmission,, Math. Biosci., 180 (2002), 183.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[17]

H. B. Guo and M. Y. Li., Global stability in a mathematical model of tuberculosis,, Canadian applied mathematics quarterly, 14 (2006).   Google Scholar

[18]

J. P. LaSalle, "The Stability of Dynamical Systems,", Regional Conference Series in Applied Mathematics, (1976).   Google Scholar

[19]

J. Dushoff, W. Huang and C. Castillo-Chavez, Backward bifurcations and batas- trophe in simple models of fatal diseases,, Journal of Mathematical Biology, 36 (1998), 227.  doi: 10.1007/s002850050099.  Google Scholar

[20]

C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,, Math. Biosci. Eng., 1 (2004), 361.  doi: 10.3934/mbe.2004.1.361.  Google Scholar

[21]

, China Yearbook., \url{http://tongji.cnki.net/kns55/brief/result.aspx?stab=shuzhi}., ().   Google Scholar

[22]

S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology,, Journal of Theoretical Biology, 254 (2008), 178.   Google Scholar

[23]

H. Wang and D. L. A, Analysis of pulmonary echinococcosis cyst excision in 136 cases,, Chinese Journal of Misdiagnostics, 11 (2011).   Google Scholar

[24]

P. S. Craig, P. Giraudoux, D. Shi and B. Bartholomot, An epidemiological and ecological study of human alveolar echinococcosis transmission in south Gansu, China,, Acta Tropica, 77 (2000), 167.   Google Scholar

show all references

References:
[1]

CDC., Parasites and health: Echinococcosis,, DPDx, (2009).   Google Scholar

[2]

S. H. Yu, H. Wang, X. H. Wu, X. Ma, Y. F. Liu, Y. M. Zhao, Y. Morishima and M. Kawanaka, Cystic and alveolar echinococcosis: An epidemiological survey in a Tibetan population in Southeast Qinghai, China,, Jpn.J.Infect.Dis., 61 (2008), 242.   Google Scholar

[3]

Y. R. Yang, M. C. Rosenzvit, L. H. Zhang, J. Z. Zhang and D. P. Mcmanus, Molecular study of echinococcus in west-central China,, Parasitology, 131 (2005), 547.   Google Scholar

[4]

H. Wang, L. Li and B. Zhang etc, Status of human hydatid disease report,, in, (2008), 73.   Google Scholar

[5]

CDC., Web. April (2010)., \url{http://www.chinacdc.cn/jkzt/tfggwssj/zzfb/crbjcykz/201004/t20100420_24967.htm}., ().   Google Scholar

[6]

X. Zhe, Medlive, Web. April (2011)., \url{http://disease.medlive.cn/wiki/entry/10001076_301_0}., ().   Google Scholar

[7]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford Univ. Press, (1991).   Google Scholar

[8]

Y. Yang, Z. Feng, D. Xu, G. Sandland and D. J. Minchella, Evolution of host resistance to parasite infection in the snail-schistosome-human system,, Journal of Mathematical Biology, 65 (2012), 201.  doi: 10.1007/s00285-011-0457-x.  Google Scholar

[9]

C. Castillo-Chavez, Z. Feng and D. Xu, A schistosomiasis model with mating structure and time delay,, Mathematical Biosciences, 211 (2008), 333.  doi: 10.1016/j.mbs.2007.11.001.  Google Scholar

[10]

Z. Feng, A. Eppert, F. Milner and D. Minchella, Estimation of parameters governing the transmission dynamics of schistosomes,, Applied Mathematics Letters, 17 (2004), 1105.  doi: 10.1016/j.aml.2004.02.002.  Google Scholar

[11]

S. G. Ruan, D. M. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission,, Bulletin of Mathematical Biology, 70 (2008), 1098.  doi: 10.1007/s11538-007-9292-z.  Google Scholar

[12]

Z. M. Chen and L. Zou et.al, Mathematical modelling and control of schistosomiasis in Hubei province, China,, Acta Tropica, 115 (2010), 119.   Google Scholar

[13]

P. R. Torgersona, D. H. Williamsb and M. N. Abo-Shehada, Modelling the prevalence of Echinococcus and Taenia species in small ruminants of different ages in northern Jordan,, Veterinary Parasitology, 79 (1998), 35.   Google Scholar

[14]

R. M. Mukbel, P. R. Torgerson and M. N. Abo-Shehada, Prevalence of hydatidosis among donkeys in northern Jordan,, Veterinary Parasitology, 88 (2000), 35.   Google Scholar

[15]

O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases,, Model building analyis and interpretation, (2000).   Google Scholar

[16]

P. van den Driessche and J. Watmough, Reproductive numbers and sub-threshold endemic equilibria for compartmentmodels of disease transmission,, Math. Biosci., 180 (2002), 183.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[17]

H. B. Guo and M. Y. Li., Global stability in a mathematical model of tuberculosis,, Canadian applied mathematics quarterly, 14 (2006).   Google Scholar

[18]

J. P. LaSalle, "The Stability of Dynamical Systems,", Regional Conference Series in Applied Mathematics, (1976).   Google Scholar

[19]

J. Dushoff, W. Huang and C. Castillo-Chavez, Backward bifurcations and batas- trophe in simple models of fatal diseases,, Journal of Mathematical Biology, 36 (1998), 227.  doi: 10.1007/s002850050099.  Google Scholar

[20]

C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,, Math. Biosci. Eng., 1 (2004), 361.  doi: 10.3934/mbe.2004.1.361.  Google Scholar

[21]

, China Yearbook., \url{http://tongji.cnki.net/kns55/brief/result.aspx?stab=shuzhi}., ().   Google Scholar

[22]

S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology,, Journal of Theoretical Biology, 254 (2008), 178.   Google Scholar

[23]

H. Wang and D. L. A, Analysis of pulmonary echinococcosis cyst excision in 136 cases,, Chinese Journal of Misdiagnostics, 11 (2011).   Google Scholar

[24]

P. S. Craig, P. Giraudoux, D. Shi and B. Bartholomot, An epidemiological and ecological study of human alveolar echinococcosis transmission in south Gansu, China,, Acta Tropica, 77 (2000), 167.   Google Scholar

[1]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[2]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[3]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[6]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[7]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[8]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[9]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[15]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[16]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[17]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[18]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[19]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[20]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]