2013, 10(2): 445-461. doi: 10.3934/mbe.2013.10.445

Dynamics of an infectious diseases with media/psychology induced non-smooth incidence

1. 

Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049

2. 

Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an, 710049, China

3. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, China

Received  May 2012 Revised  October 2012 Published  January 2013

This paper proposes and analyzes a mathematical model on an infectious disease system with a piecewise smooth incidence rate concerning media/psychological effect. The proposed models extend the classic models with media coverage by including a piecewise smooth incidence rate to represent that the reduction factor because of media coverage depends on both the number of cases and the rate of changes in case number. On the basis of properties of Lambert W function the implicitly defined model has been converted into a piecewise smooth system with explicit definition, and the global dynamic behavior is theoretically examined. The disease-free is globally asymptotically stable when a certain threshold is less than unity, while the endemic equilibrium is globally asymptotically stable for otherwise. The media/psychological impact although does not affect the epidemic threshold, delays the epidemic peak and results in a lower size of outbreak (or equilibrium level of infected individuals).
Citation: Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445
References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans, Dynamics and Control,", Oxford University, (1991).   Google Scholar

[2]

J. Aubin and A. Cellina, "Differential Inclusion,", Springer-Verlag, (1984).   Google Scholar

[3]

A. Banaszuk, On the existence and uniqueness of solutions for implicit linear systems on finite interval,, Circ. Syst. Signal. Pr., 12 (1993), 375.  doi: 10.1007/BF01223316.  Google Scholar

[4]

S. Banerjee and G. Verghese, "Nonlinear Phenomena in Power Electronics,", IEEE Press, (2001).   Google Scholar

[5]

M. D. Bernardo, C. J. Budd, A. R. Champneys, et al., Bifurcations in nonsmooth dynamical systems,, SIAM Review, 50 (2008), 629.  doi: 10.1137/050625060.  Google Scholar

[6]

M. di Bernardo, K. H. Johansson and F. Vasca, Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations,, Int. J. Bifurcat. Chaos, 11 (2001), 1121.   Google Scholar

[7]

M. P. Brinn, K. V. Carson, A. J. Esterman, A. B. Chang and B. J. Smith, Mass media interventions for preventing smoking in young people,, Cochrane Db. Syst. Rev., 11 (2010), 1.   Google Scholar

[8]

B. Brogliato, "Nonsmooth Mechanics: Models, Dynamics and Control,", Springer-Verlag, (1999).   Google Scholar

[9]

R. M. Corless, G. H. Gonnet, et al., On the Lambert W function,, Adv. Comput. Math., 5 (1996), 329.  doi: 10.1007/BF02124750.  Google Scholar

[10]

J. Cui, Y. Sun and H. Zhu, The impact of media on the spreading and control of infectious disease., J. Dynam. Diff. Eqns., 20 (2008), 31.  doi: 10.1007/s10884-007-9075-0.  Google Scholar

[11]

J. Cui, X. Tao and H. Zhu, An SIS infection model incorporating media coverage,, Rocky Mt. J. Math., 38 (2008), 1323.  doi: 10.1216/RMJ-2008-38-5-1323.  Google Scholar

[12]

K. Deimling, "Multivalued Differential Equations,", Walter De Gruyter, (1992).  doi: 10.1515/9783110874228.  Google Scholar

[13]

A. F. Filippov, "Differential Equations with Discontinuous Right-Hand Sides,", Kluwer Academic, (1988).   Google Scholar

[14]

S. Funk, M. Salathe and V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review,, J. R. Soc. Interface, 7 (2010), 1247.   Google Scholar

[15]

S. Funk, E. Gilad, C. Watkins and V. A. A. Jansen, The spread of awareness and its impact on epidemic outbreaks,, PNAS, 106 (2009), 6872.   Google Scholar

[16]

A. Handel, Jr I. M. Longini and R. Antia, What is the best control strategy for multiple infectious disease outbreaks?,, Proc. R. Soc. B., 274 (2007), 833.   Google Scholar

[17]

W. Heemels and B. Brogliato, The complementarity class of hybrid dynamical systems,, European J. Control., 9 (2003), 311.   Google Scholar

[18]

J. H. Jones and M. Salathé, Early assessment of anxiety and behavioral response to novel swine-origin influenza A(H1N1),, PLoS ONE, 4 (2009).  doi: 10.1371/journal.pone.0008032.  Google Scholar

[19]

R. Liu, J. Wu and H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases,, Comput. Math. Methods Med., 8 (2007), 153.  doi: 10.1080/17486700701425870.  Google Scholar

[20]

Y. Liu and J. Cui, The impact of media coverage on the dynamics of infectious disease,, Int. J. Biomath., 1 (2008), 65.  doi: 10.1142/S1793524508000023.  Google Scholar

[21]

J. Melin, Does distribution theory contain means for extending Poincaré-Bendixson theory,, J. Math. Anal. Appl., 303 (2004), 81.  doi: 10.1016/j.jmaa.2004.06.069.  Google Scholar

[22]

G. J. Rubin, H. W. W. Potts and S. Michie, The impact of communications about swine flu (influenza A H1N1v) on public responses to the outbreak: Results from 36 national telephone surveys in the UK,, Health Technol. Assess., 14 (2010), 183.   Google Scholar

[23]

C. Sun, W. Yang, J. Arino and K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting,, Math. Biosci., 230 (2011), 87.  doi: 10.1016/j.mbs.2011.01.005.  Google Scholar

[24]

J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith and C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza,, BMC Public Health, 11 (2011).   Google Scholar

[25]

J. M. Tchuenche and C. T. Bauch, Dynamics of an infectious disease where media coverage influences transmission,, ISRN Biomathematics, (2012).  doi: 10.5402/2012/581274.  Google Scholar

[26]

W. Wang, Backward bifurcation of an epidemic model with treatment,, Math. Biosci., 201 (2006), 58.  doi: 10.1016/j.mbs.2005.12.022.  Google Scholar

[27]

Y. Xiao, Y. Zhou and S. Tang, Modelling disease spread in dispersal networks at two levels,, IMA. J. Math. appl. Med. Biol., 28 (2010), 227.  doi: 10.1093/imammb/dqq007.  Google Scholar

[28]

Y. Xiao and S. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model,, Nonl. Anal. RWA., 11 (2010), 4154.  doi: 10.1016/j.nonrwa.2010.05.002.  Google Scholar

[29]

Y. Xiao, X. Xu and S. Tang, Sliding mode control of outbreaks of emerging infectious diseases,, Bull. Math. Biol., 74 (2012), 2403.   Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans, Dynamics and Control,", Oxford University, (1991).   Google Scholar

[2]

J. Aubin and A. Cellina, "Differential Inclusion,", Springer-Verlag, (1984).   Google Scholar

[3]

A. Banaszuk, On the existence and uniqueness of solutions for implicit linear systems on finite interval,, Circ. Syst. Signal. Pr., 12 (1993), 375.  doi: 10.1007/BF01223316.  Google Scholar

[4]

S. Banerjee and G. Verghese, "Nonlinear Phenomena in Power Electronics,", IEEE Press, (2001).   Google Scholar

[5]

M. D. Bernardo, C. J. Budd, A. R. Champneys, et al., Bifurcations in nonsmooth dynamical systems,, SIAM Review, 50 (2008), 629.  doi: 10.1137/050625060.  Google Scholar

[6]

M. di Bernardo, K. H. Johansson and F. Vasca, Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations,, Int. J. Bifurcat. Chaos, 11 (2001), 1121.   Google Scholar

[7]

M. P. Brinn, K. V. Carson, A. J. Esterman, A. B. Chang and B. J. Smith, Mass media interventions for preventing smoking in young people,, Cochrane Db. Syst. Rev., 11 (2010), 1.   Google Scholar

[8]

B. Brogliato, "Nonsmooth Mechanics: Models, Dynamics and Control,", Springer-Verlag, (1999).   Google Scholar

[9]

R. M. Corless, G. H. Gonnet, et al., On the Lambert W function,, Adv. Comput. Math., 5 (1996), 329.  doi: 10.1007/BF02124750.  Google Scholar

[10]

J. Cui, Y. Sun and H. Zhu, The impact of media on the spreading and control of infectious disease., J. Dynam. Diff. Eqns., 20 (2008), 31.  doi: 10.1007/s10884-007-9075-0.  Google Scholar

[11]

J. Cui, X. Tao and H. Zhu, An SIS infection model incorporating media coverage,, Rocky Mt. J. Math., 38 (2008), 1323.  doi: 10.1216/RMJ-2008-38-5-1323.  Google Scholar

[12]

K. Deimling, "Multivalued Differential Equations,", Walter De Gruyter, (1992).  doi: 10.1515/9783110874228.  Google Scholar

[13]

A. F. Filippov, "Differential Equations with Discontinuous Right-Hand Sides,", Kluwer Academic, (1988).   Google Scholar

[14]

S. Funk, M. Salathe and V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review,, J. R. Soc. Interface, 7 (2010), 1247.   Google Scholar

[15]

S. Funk, E. Gilad, C. Watkins and V. A. A. Jansen, The spread of awareness and its impact on epidemic outbreaks,, PNAS, 106 (2009), 6872.   Google Scholar

[16]

A. Handel, Jr I. M. Longini and R. Antia, What is the best control strategy for multiple infectious disease outbreaks?,, Proc. R. Soc. B., 274 (2007), 833.   Google Scholar

[17]

W. Heemels and B. Brogliato, The complementarity class of hybrid dynamical systems,, European J. Control., 9 (2003), 311.   Google Scholar

[18]

J. H. Jones and M. Salathé, Early assessment of anxiety and behavioral response to novel swine-origin influenza A(H1N1),, PLoS ONE, 4 (2009).  doi: 10.1371/journal.pone.0008032.  Google Scholar

[19]

R. Liu, J. Wu and H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases,, Comput. Math. Methods Med., 8 (2007), 153.  doi: 10.1080/17486700701425870.  Google Scholar

[20]

Y. Liu and J. Cui, The impact of media coverage on the dynamics of infectious disease,, Int. J. Biomath., 1 (2008), 65.  doi: 10.1142/S1793524508000023.  Google Scholar

[21]

J. Melin, Does distribution theory contain means for extending Poincaré-Bendixson theory,, J. Math. Anal. Appl., 303 (2004), 81.  doi: 10.1016/j.jmaa.2004.06.069.  Google Scholar

[22]

G. J. Rubin, H. W. W. Potts and S. Michie, The impact of communications about swine flu (influenza A H1N1v) on public responses to the outbreak: Results from 36 national telephone surveys in the UK,, Health Technol. Assess., 14 (2010), 183.   Google Scholar

[23]

C. Sun, W. Yang, J. Arino and K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting,, Math. Biosci., 230 (2011), 87.  doi: 10.1016/j.mbs.2011.01.005.  Google Scholar

[24]

J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith and C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza,, BMC Public Health, 11 (2011).   Google Scholar

[25]

J. M. Tchuenche and C. T. Bauch, Dynamics of an infectious disease where media coverage influences transmission,, ISRN Biomathematics, (2012).  doi: 10.5402/2012/581274.  Google Scholar

[26]

W. Wang, Backward bifurcation of an epidemic model with treatment,, Math. Biosci., 201 (2006), 58.  doi: 10.1016/j.mbs.2005.12.022.  Google Scholar

[27]

Y. Xiao, Y. Zhou and S. Tang, Modelling disease spread in dispersal networks at two levels,, IMA. J. Math. appl. Med. Biol., 28 (2010), 227.  doi: 10.1093/imammb/dqq007.  Google Scholar

[28]

Y. Xiao and S. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model,, Nonl. Anal. RWA., 11 (2010), 4154.  doi: 10.1016/j.nonrwa.2010.05.002.  Google Scholar

[29]

Y. Xiao, X. Xu and S. Tang, Sliding mode control of outbreaks of emerging infectious diseases,, Bull. Math. Biol., 74 (2012), 2403.   Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[6]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[7]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[8]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[9]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[10]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[11]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[12]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[13]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[14]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[15]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[16]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[17]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[18]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (178)
  • HTML views (0)
  • Cited by (61)

Other articles
by authors

[Back to Top]