2013, 10(3): 499-521. doi: 10.3934/mbe.2013.10.499

A singularly perturbed SIS model with age structure

1. 

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban

2. 

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4041, South Africa

3. 

Institute of Applied Mathematics and Mechanics, University of Warsaw, Warsaw, Poland

Received  May 2012 Revised  August 2012 Published  April 2013

We present a preliminary study of an SIS model with a basic age structure and we focus on a disease with quick turnover, such as influenza or common cold. In such a case the difference between the characteristic demographic and epidemiological times naturally introduces two time scales in the model which makes it singularly perturbed. Using the Tikhonov theorem we prove that for certain classes of initial conditions the nonlinear structured SIS model can be approximated with very good accuracy by lower dimensional linear models.
Citation: Jacek Banasiak, Eddy Kimba Phongi, MirosŁaw Lachowicz. A singularly perturbed SIS model with age structure. Mathematical Biosciences & Engineering, 2013, 10 (3) : 499-521. doi: 10.3934/mbe.2013.10.499
References:
[1]

J. Banasiak and M. Lachowicz, Multiscale approach in mathematical biology. Comment on "Toward a mathematical theory of living systems focusing on developmental biology and evolution: A review and perspectives" by Bellomo and Carbonaro,, Physics of Life Reviews, 8 (2011), 19.   Google Scholar

[2]

J. Banasiak and M. Lachowicz, Methods of small parameter in mathematical biology and other applications,, preprint., ().   Google Scholar

[3]

J. Banasiak and M. Lachowicz, Singularly perturbed epidemiological models - behaviour close to non-isolated quasi steady states,, in preparation., ().   Google Scholar

[4]

N. Bellomo and B. Carbonaro, Toward a mathematical theory of living systems focusing on developmental biology and evolution: A review and perspectives,, Physics of Life Reviews, 8 (2011), 1.   Google Scholar

[5]

M. Braun, "Differential Equations and Their Applications,", Springer-Verlag, (1993).   Google Scholar

[6]

J. Cronin, Electrically active cells and singular perturbation problems,, Math. Intelligencer, 12 (1990), 57.  doi: 10.1007/BF03024034.  Google Scholar

[7]

D. J. D. Earn, A light introduction to modelling recurrent epidemics,, in, (2008), 3.  doi: 10.1007/978-3-540-78911-6_1.  Google Scholar

[8]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations,, J. Differ. Equ., 31 (1979), 53.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[9]

G. Hek, Geometrical singular perturbation theory in biological practice,, J. Math. Biol., 60 (2010), 347.  doi: 10.1007/s00285-009-0266-7.  Google Scholar

[10]

F. C. Hoppensteadt, Stability with parameter,, J. Math. Anal. Appl., 18 (1967), 129.   Google Scholar

[11]

C. K. R. T. Jones, Geometric singular perturbation theory,, in, (1995), 44.  doi: 10.1007/BFb0095239.  Google Scholar

[12]

M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points fold and canard points in two dimensions,, SIAM J. Math. Anal., 33 (2001), 286.  doi: 10.1137/S0036141099360919.  Google Scholar

[13]

M. Lachowicz, Links between microscopic and macroscopic descriptions,, in, (2008), 201.  doi: 10.1007/978-3-540-78362-6_4.  Google Scholar

[14]

M. Lachowicz, Microscopic, mesoscopic and macroscopic descriptions of complex systems,, Prob. Engin. Mech., 26 (2011), 54.   Google Scholar

[15]

S. Muratori and S. Rinaldi, Low- and high-frequency oscillations in three-dimensional food chain systems,, SIAM J. Appl. Math., 52 (1992), 1688.  doi: 10.1137/0152097.  Google Scholar

[16]

J. D. Murray, "Mathematical Biology,", Springer, (2003).  doi: 10.1007/b98869.  Google Scholar

[17]

, "Common Cold Fact Sheet,", , ().   Google Scholar

[18]

S. Rinaldi and S. Muratori, Slow-fast limit cycles in predator-prey models,, Ecol. Model., 6 (1992), 287.   Google Scholar

[19]

D. Schanzer, J. Vachon and L. Pelletier, Age-specific differences in influenza a epidemic curves: Do children drive the spread of influenza epidemics?,, 174 (2011), 174 (2011), 109.  doi: 10.1093/aje/kwr037.  Google Scholar

[20]

L. A. Segel and M. Slemrod, The quasi-steady-state assumption: A case study in perturbation,, SIAM Reviews, 31 (1989), 446.  doi: 10.1137/1031091.  Google Scholar

[21]

N. Siewe, "The Tikhonov Theorem In Multiscale Modelling: An Application To The SIRS Epidemic Model,", African Institute of Mathematical Sciences Postgraduate Diploma Essay 2011/12, (2011), 2011.   Google Scholar

[22]

Y. Sun, Z. Wang, Y. Zhang and J. Sundell, In China, students in crowded dormitories with a low ventilation rate have more common colds: Evidence for airborne transmission,, PLoS ONE, 6 ().  doi: 10.1371/journal.pone.0027140.  Google Scholar

[23]

H. R. Thieme, "Mathematics in Population Biology,", Princeton University Press, (2003).   Google Scholar

[24]

A. N. Tikhonov, A. B. Vasileva and A. G. Sveshnikov, "Differential Equations,", Springer, (1985).  doi: 10.1007/978-3-642-82175-2.  Google Scholar

[25]

A. B. Vasileva and V. F. Butuzov, "Asymptotic Expansions of Solutions of Singularly Perturbed Equations,", Nauka, (1973).   Google Scholar

[26]

A. B. Vasilieva and V. F. Butuzov, "Singularly Perturbed Equations in the Critical Cases,", Moscow State University, (1978).   Google Scholar

[27]

A. B. Vasilieva, On the development of singular perturbation theory at Moscow State University and elsewhere,, SIAM Review, 36 (1994), 440.  doi: 10.1137/1036100.  Google Scholar

[28]

F. Verhulst, "Methods and Applications of Singular Perturbations,", Springer, (2005).  doi: 10.1007/0-387-28313-7.  Google Scholar

show all references

References:
[1]

J. Banasiak and M. Lachowicz, Multiscale approach in mathematical biology. Comment on "Toward a mathematical theory of living systems focusing on developmental biology and evolution: A review and perspectives" by Bellomo and Carbonaro,, Physics of Life Reviews, 8 (2011), 19.   Google Scholar

[2]

J. Banasiak and M. Lachowicz, Methods of small parameter in mathematical biology and other applications,, preprint., ().   Google Scholar

[3]

J. Banasiak and M. Lachowicz, Singularly perturbed epidemiological models - behaviour close to non-isolated quasi steady states,, in preparation., ().   Google Scholar

[4]

N. Bellomo and B. Carbonaro, Toward a mathematical theory of living systems focusing on developmental biology and evolution: A review and perspectives,, Physics of Life Reviews, 8 (2011), 1.   Google Scholar

[5]

M. Braun, "Differential Equations and Their Applications,", Springer-Verlag, (1993).   Google Scholar

[6]

J. Cronin, Electrically active cells and singular perturbation problems,, Math. Intelligencer, 12 (1990), 57.  doi: 10.1007/BF03024034.  Google Scholar

[7]

D. J. D. Earn, A light introduction to modelling recurrent epidemics,, in, (2008), 3.  doi: 10.1007/978-3-540-78911-6_1.  Google Scholar

[8]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations,, J. Differ. Equ., 31 (1979), 53.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[9]

G. Hek, Geometrical singular perturbation theory in biological practice,, J. Math. Biol., 60 (2010), 347.  doi: 10.1007/s00285-009-0266-7.  Google Scholar

[10]

F. C. Hoppensteadt, Stability with parameter,, J. Math. Anal. Appl., 18 (1967), 129.   Google Scholar

[11]

C. K. R. T. Jones, Geometric singular perturbation theory,, in, (1995), 44.  doi: 10.1007/BFb0095239.  Google Scholar

[12]

M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points fold and canard points in two dimensions,, SIAM J. Math. Anal., 33 (2001), 286.  doi: 10.1137/S0036141099360919.  Google Scholar

[13]

M. Lachowicz, Links between microscopic and macroscopic descriptions,, in, (2008), 201.  doi: 10.1007/978-3-540-78362-6_4.  Google Scholar

[14]

M. Lachowicz, Microscopic, mesoscopic and macroscopic descriptions of complex systems,, Prob. Engin. Mech., 26 (2011), 54.   Google Scholar

[15]

S. Muratori and S. Rinaldi, Low- and high-frequency oscillations in three-dimensional food chain systems,, SIAM J. Appl. Math., 52 (1992), 1688.  doi: 10.1137/0152097.  Google Scholar

[16]

J. D. Murray, "Mathematical Biology,", Springer, (2003).  doi: 10.1007/b98869.  Google Scholar

[17]

, "Common Cold Fact Sheet,", , ().   Google Scholar

[18]

S. Rinaldi and S. Muratori, Slow-fast limit cycles in predator-prey models,, Ecol. Model., 6 (1992), 287.   Google Scholar

[19]

D. Schanzer, J. Vachon and L. Pelletier, Age-specific differences in influenza a epidemic curves: Do children drive the spread of influenza epidemics?,, 174 (2011), 174 (2011), 109.  doi: 10.1093/aje/kwr037.  Google Scholar

[20]

L. A. Segel and M. Slemrod, The quasi-steady-state assumption: A case study in perturbation,, SIAM Reviews, 31 (1989), 446.  doi: 10.1137/1031091.  Google Scholar

[21]

N. Siewe, "The Tikhonov Theorem In Multiscale Modelling: An Application To The SIRS Epidemic Model,", African Institute of Mathematical Sciences Postgraduate Diploma Essay 2011/12, (2011), 2011.   Google Scholar

[22]

Y. Sun, Z. Wang, Y. Zhang and J. Sundell, In China, students in crowded dormitories with a low ventilation rate have more common colds: Evidence for airborne transmission,, PLoS ONE, 6 ().  doi: 10.1371/journal.pone.0027140.  Google Scholar

[23]

H. R. Thieme, "Mathematics in Population Biology,", Princeton University Press, (2003).   Google Scholar

[24]

A. N. Tikhonov, A. B. Vasileva and A. G. Sveshnikov, "Differential Equations,", Springer, (1985).  doi: 10.1007/978-3-642-82175-2.  Google Scholar

[25]

A. B. Vasileva and V. F. Butuzov, "Asymptotic Expansions of Solutions of Singularly Perturbed Equations,", Nauka, (1973).   Google Scholar

[26]

A. B. Vasilieva and V. F. Butuzov, "Singularly Perturbed Equations in the Critical Cases,", Moscow State University, (1978).   Google Scholar

[27]

A. B. Vasilieva, On the development of singular perturbation theory at Moscow State University and elsewhere,, SIAM Review, 36 (1994), 440.  doi: 10.1137/1036100.  Google Scholar

[28]

F. Verhulst, "Methods and Applications of Singular Perturbations,", Springer, (2005).  doi: 10.1007/0-387-28313-7.  Google Scholar

[1]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[2]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[3]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[4]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[5]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[6]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[7]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[8]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[11]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[12]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[13]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288

[14]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[15]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[16]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[17]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[18]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[19]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[20]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (6)

[Back to Top]