2013, 10(3): 551-563. doi: 10.3934/mbe.2013.10.551

Gompertz model with delays and treatment: Mathematical analysis

1. 

Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw

Received  June 2012 Revised  August 2012 Published  April 2013

In this paper we study the delayed Gompertz model, as a typical model of tumor growth, with a term describing external interference that can reflect a treatment, e.g. chemotherapy. We mainly consider two types of delayed models, the one with the delay introduced in the per capita growth rate (we call it the single delayed model) and the other with the delay introduced in the net growth rate (the double delayed model). We focus on stability and possible stability switches with increasing delay for the positive steady state. Moreover, we study a Hopf bifurcation, including stability of arising periodic solutions for a constant treatment. The analytical results are extended by numerical simulations for a pharmacokinetic treatment function.
Citation: Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś. Gompertz model with delays and treatment: Mathematical analysis. Mathematical Biosciences & Engineering, 2013, 10 (3) : 551-563. doi: 10.3934/mbe.2013.10.551
References:
[1]

M. Bodnar, The nonnegativity of the solutions of delay differential equations,, Appl. Math. Lett., 13 (2000), 91.  doi: 10.1016/S0893-9659(00)00061-6.  Google Scholar

[2]

M. Bodnar and U. Foryś, Three types of simple DDE's describing tumor growth,, J. Biol. Sys., 15 (2007), 1.  doi: 10.1142/S0218339007002313.  Google Scholar

[3]

O. Diekmann, S. van Giles and S.M.V. Lunel, "Delay Equations,", Springer-Verlag, (1995).  doi: 10.1007/978-1-4612-4206-2.  Google Scholar

[4]

A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: Analysis and extensions of the model by Hahnfeldt et al. (1999),, Math. Biosci., 191 (2004), 159.  doi: 10.1016/j.mbs.2004.06.003.  Google Scholar

[5]

A. d'Onofrio and A. Gandolfi, A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy,, Math. Med. Biol., 26 (2009), 63.  doi: 10.1093/imammb/dqn024.  Google Scholar

[6]

A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors,, Math. Biosci., 222 (2009), 13.  doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[7]

U. Foryś, J. Poleszczuk and T. Liu, Logistic tumor growth with delay and impulsive treatment,, Accepted for Math. Pop. Studies., ().   Google Scholar

[8]

G. Gompertz, On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies,, Philos. Trans. R. Soc. London, 115 (1825), 513.   Google Scholar

[9]

P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy,, Cancer Res., 59 (1999), 4770.   Google Scholar

[10]

J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations,", Springer, (1993).   Google Scholar

[11]

G. E. Hutchinson, Circular casual systems in ecology,, Ann. N. Y. Acad. Sci., 50 (1948), 221.   Google Scholar

[12]

U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. Control Optim., 46 (2007), 1052.  doi: 10.1137/060665294.  Google Scholar

[13]

U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis,, J. Theor. Biol., 252 (2008), 295.  doi: 10.1016/j.jtbi.2008.02.014.  Google Scholar

[14]

J. D. Murray, "Mathematical Biology: {I.} An Introduction,", Springer, (2007).   Google Scholar

[15]

M. J. Piotrowska, M. Bodnar and U. Foryś, Logistic equation with treatment function and discrete delays,, (submitted)., ().   Google Scholar

[16]

M. J. Piotrowska and U. Foryś, Analysis of the Hopf bifurcation for the family of angiogenesis models,, J. Math. Anal. Appl., 382 (2011), 180.  doi: 10.1016/j.jmaa.2011.04.046.  Google Scholar

[17]

M. J. Piotrowska and U. Foryś, The nature of Hopf bifurcation for the Gompertz model with delays,, Math. and Comp. Modelling, 54 (2011), 2183.  doi: 10.1016/j.mcm.2011.05.027.  Google Scholar

[18]

J. Poleszczuk, M. Bodnar and U. Foryś, New approach to modeling of antiangiogenic treatment on the basis of Hahnfeldt et al. model,, Math. Biosci. Eng., 8 (2011), 591.  doi: 10.3934/mbe.2011.8.591.  Google Scholar

[19]

R. Schuster and H. Schuster, Reconstruction models for the Ehrlich Ascites tumor for the mouse,, in, (1995), 335.   Google Scholar

show all references

References:
[1]

M. Bodnar, The nonnegativity of the solutions of delay differential equations,, Appl. Math. Lett., 13 (2000), 91.  doi: 10.1016/S0893-9659(00)00061-6.  Google Scholar

[2]

M. Bodnar and U. Foryś, Three types of simple DDE's describing tumor growth,, J. Biol. Sys., 15 (2007), 1.  doi: 10.1142/S0218339007002313.  Google Scholar

[3]

O. Diekmann, S. van Giles and S.M.V. Lunel, "Delay Equations,", Springer-Verlag, (1995).  doi: 10.1007/978-1-4612-4206-2.  Google Scholar

[4]

A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: Analysis and extensions of the model by Hahnfeldt et al. (1999),, Math. Biosci., 191 (2004), 159.  doi: 10.1016/j.mbs.2004.06.003.  Google Scholar

[5]

A. d'Onofrio and A. Gandolfi, A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy,, Math. Med. Biol., 26 (2009), 63.  doi: 10.1093/imammb/dqn024.  Google Scholar

[6]

A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors,, Math. Biosci., 222 (2009), 13.  doi: 10.1016/j.mbs.2009.08.004.  Google Scholar

[7]

U. Foryś, J. Poleszczuk and T. Liu, Logistic tumor growth with delay and impulsive treatment,, Accepted for Math. Pop. Studies., ().   Google Scholar

[8]

G. Gompertz, On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies,, Philos. Trans. R. Soc. London, 115 (1825), 513.   Google Scholar

[9]

P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy,, Cancer Res., 59 (1999), 4770.   Google Scholar

[10]

J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations,", Springer, (1993).   Google Scholar

[11]

G. E. Hutchinson, Circular casual systems in ecology,, Ann. N. Y. Acad. Sci., 50 (1948), 221.   Google Scholar

[12]

U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. Control Optim., 46 (2007), 1052.  doi: 10.1137/060665294.  Google Scholar

[13]

U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis,, J. Theor. Biol., 252 (2008), 295.  doi: 10.1016/j.jtbi.2008.02.014.  Google Scholar

[14]

J. D. Murray, "Mathematical Biology: {I.} An Introduction,", Springer, (2007).   Google Scholar

[15]

M. J. Piotrowska, M. Bodnar and U. Foryś, Logistic equation with treatment function and discrete delays,, (submitted)., ().   Google Scholar

[16]

M. J. Piotrowska and U. Foryś, Analysis of the Hopf bifurcation for the family of angiogenesis models,, J. Math. Anal. Appl., 382 (2011), 180.  doi: 10.1016/j.jmaa.2011.04.046.  Google Scholar

[17]

M. J. Piotrowska and U. Foryś, The nature of Hopf bifurcation for the Gompertz model with delays,, Math. and Comp. Modelling, 54 (2011), 2183.  doi: 10.1016/j.mcm.2011.05.027.  Google Scholar

[18]

J. Poleszczuk, M. Bodnar and U. Foryś, New approach to modeling of antiangiogenic treatment on the basis of Hahnfeldt et al. model,, Math. Biosci. Eng., 8 (2011), 591.  doi: 10.3934/mbe.2011.8.591.  Google Scholar

[19]

R. Schuster and H. Schuster, Reconstruction models for the Ehrlich Ascites tumor for the mouse,, in, (1995), 335.   Google Scholar

[1]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[2]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[3]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[4]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[5]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[8]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[9]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[10]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[11]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[12]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[13]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[14]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[15]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[16]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[17]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[18]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[19]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[20]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (9)

[Back to Top]