Citation: |
[1] |
M. Bodnar, The nonnegativity of the solutions of delay differential equations, Appl. Math. Lett., 13 (2000), 91-95.doi: 10.1016/S0893-9659(00)00061-6. |
[2] |
M. Bodnar and U. Foryś, Three types of simple DDE's describing tumor growth, J. Biol. Sys., 15 (2007), 1-19.doi: 10.1142/S0218339007002313. |
[3] |
O. Diekmann, S. van Giles and S.M.V. Lunel, "Delay Equations," Springer-Verlag, New York, 1995.doi: 10.1007/978-1-4612-4206-2. |
[4] |
A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: Analysis and extensions of the model by Hahnfeldt et al. (1999), Math. Biosci., 191 (2004), 159-184.doi: 10.1016/j.mbs.2004.06.003. |
[5] |
A. d'Onofrio and A. Gandolfi, A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy, Math. Med. Biol., 26 (2009), 63-95.doi: 10.1093/imammb/dqn024. |
[6] |
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Math. Biosci., 222 (2009), 13-26.doi: 10.1016/j.mbs.2009.08.004. |
[7] |
U. Foryś, J. Poleszczuk and T. Liu, Logistic tumor growth with delay and impulsive treatment, Accepted for Math. Pop. Studies. |
[8] |
G. Gompertz, On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies, Philos. Trans. R. Soc. London, 115 (1825), 513-585. |
[9] |
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res., 59 (1999), 4770-4775. |
[10] |
J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations," Springer, New York, 1993. |
[11] |
G. E. Hutchinson, Circular casual systems in ecology, Ann. N. Y. Acad. Sci., 50 (1948), 221-246. |
[12] |
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Control Optim., 46 (2007), 1052-1079.doi: 10.1137/060665294. |
[13] |
U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis, J. Theor. Biol., 252 (2008), 295-312.doi: 10.1016/j.jtbi.2008.02.014. |
[14] |
J. D. Murray, "Mathematical Biology: {I.} An Introduction," Springer, Berlin-Heidelberg, 2007. |
[15] |
M. J. Piotrowska, M. Bodnar and U. Foryś, Logistic equation with treatment function and discrete delays, (submitted). |
[16] |
M. J. Piotrowska and U. Foryś, Analysis of the Hopf bifurcation for the family of angiogenesis models, J. Math. Anal. Appl., 382 (2011), 180-203.doi: 10.1016/j.jmaa.2011.04.046. |
[17] |
M. J. Piotrowska and U. Foryś, The nature of Hopf bifurcation for the Gompertz model with delays, Math. and Comp. Modelling, 54 (2011), 2183-2198.doi: 10.1016/j.mcm.2011.05.027. |
[18] |
J. Poleszczuk, M. Bodnar and U. Foryś, New approach to modeling of antiangiogenic treatment on the basis of Hahnfeldt et al. model, Math. Biosci. Eng., 8 (2011), 591-603.doi: 10.3934/mbe.2011.8.591. |
[19] |
R. Schuster and H. Schuster, Reconstruction models for the Ehrlich Ascites tumor for the mouse, in "Mathematical Population Dynamics" (eds. O. Arino, D. Axelrod and M. Kimmel), Wuertz, Winnipeg, Canada, (1995), 335-348. |