2013, 10(3): 565-578. doi: 10.3934/mbe.2013.10.565

Mathematical modeling of glioma therapy using oncolytic viruses

1. 

Laboratoire Interdisciplinaire des Environnements Continentaux, Université de Lorraine, CNRS UMR 7360, 8 rue du Général Delestraint, 57070 METZ, France

2. 

Laboratoire de Mathématiques Raphaël Salem, Université de Rouen, UMR 6085 CNRS, Avenue de l'Université, 76801 Saint Etienne du Rouvray, France

3. 

Department of Mathematics, Elmhurst College, 190 Prospect Avenue, Elmhurst, IL 60126, United States

Received  June 2012 Revised  February 2013 Published  April 2013

Diffuse infiltrative gliomas are adjudged to be the most common primary brain tumors in adults and they tend to blend in extensively in the brain micro-environment. This makes it difficult for medical practitioners to successfully plan effective treatments. In attempts to prolong the lengths of survival times for patients with malignant brain tumors, novel therapeutic alternatives such as gene therapy with oncolytic viruses are currently being explored. Based on such approaches and existing work, a spatio-temporal model that describes interaction between tumor cells and oncolytic viruses is developed. Conditions that lead to optimal therapy in minimizing cancer cell proliferation and otherwise are analytically demonstrated. Numerical simulations are conducted with the aim of showing the impact of virotherapy on proliferation or invasion of cancer cells and of estimating survival times.
Citation: Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565
References:
[1]

E. C. Alvord Jr and C. M. Shaw, Neoplasms affecting the nervous system of the elderly,, in, (1991), 210.   Google Scholar

[2]

D. D. Barker and A. J. Berk, Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection,, Virology, 156 (1987), 107.  doi: 10.1016/0042-6822(87)90441-7.  Google Scholar

[3]

N. Bagheri, M. Shiina, D. A. Lauffenburger and W. M. Korn, A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-Inhibition,, PLoS Comput. Biol., 7 (2011).  doi: 10.1371/journal.pcbi.1001085.  Google Scholar

[4]

F. G. Blankenberg, R. L. Teplitz, W. Ellis, M. S. Salamat, B. H. Min, L. Hall, D. B. Boothroyd, I. M. Johnstone and D. R. Enzmann, The influence of volumetric tumor doubling time, DNA ploidy, and histologic grade on the survival of patients with intracranial astrocytomas,, AJNR Am. J. Neuroradiol, 16 (1995), 1001.   Google Scholar

[5]

P. C. Burger, E. R. Heinz, T. Shibata and P. Kleihues, Topographic anatomy and CT correlations in the untreated glioblastoma multiforme,, J. Neurosurg, 68 (1988), 698.  doi: 10.3171/jns.1988.68.5.0698.  Google Scholar

[6]

B. I. Camara and H. Mokrani, Analysis of wave solutions of an adhenovirus-tumor cell system,, Abstract and Applied Analysis, (2012), 1.  doi: 10.1155/2012/590326.  Google Scholar

[7]

G. Cherubini, T. Petouchoff, M. Grossi, S. Piersanti, E. Cundari and I. Saggio, E1B55K-deleted adenovirus (ONYX-015) overrides G1/S and G2/M checkpoints and causes mitotic catastrophe and endoreduplication in p53-proficient normal cells,, Cell Cycle, 5 (2006), 2244.   Google Scholar

[8]

An. Claes, A. J. Idema and P. Wesseling, Diffuse glioma growth: A guerilla war,, Acta Neuropathol, 114 (2007), 443.  doi: 10.1007/s00401-007-0293-7.  Google Scholar

[9]

J. C. Concannon, S. Kramer S and R. Berry, The extent of intracranial gliomata at autopsy and its relation to techniques used in radiation therapy of brain tumors,, Am. J. Roentgenol. Radium Ther. Nucl. Med., 84 (1960), 99.   Google Scholar

[10]

L. K. Csatary, G. Gosztonyi, J. Szeberenyi, Z. Fabian, V. Liszka, B. Bodey and C. M. Csatary, MTH-68/H oncolytic viral treatment in human high-grade gliomas,, J. Neurooncol, 67 (2004), 83.  doi: 10.1023/B:NEON.0000021735.85511.05.  Google Scholar

[11]

K. J. Excoffon, G. L. Traver and J. Zabner, The role of the extracellular domain in the biology of the coxsackievirus and adenovirus receptor,, Am. J. Respir. Cell Mol. Biol., 32 (2005), 498.  doi: 10.1165/rcmb.2005-0031OC.  Google Scholar

[12]

E. Fan, Extended tanh-function method and its applications to nonlinear equations,, Phys. Lett. A, 277 (2000), 212.  doi: 10.1016/S0375-9601(00)00725-8.  Google Scholar

[13]

A. Friedman and Y. Tao, Analysis of a model of a virus that replicates selectively in tumor cells,, J. Math. Biol., 47 (2003), 391.  doi: 10.1007/s00285-003-0199-5.  Google Scholar

[14]

X. Ge and M. Arcak, A new sufficient condition for additive D-stability and application to cyclic reaction-diffusion models,, American Control Conference, (2009), 2904.  doi: 10.1109/ACC.2009.5160022.  Google Scholar

[15]

H. L. Harpold, E. C. Alvord Jr. and K. R. Swanson, The evolution of mathematical modeling of glioma proliferation and invasion,, J. Neuropathol. Exp. Neurol., 66 (2007), 1.  doi: 10.1097/nen.0b013e31802d9000.  Google Scholar

[16]

D. Harrison, H. Sauthoff, S. Heitner, J. Jagirdar, W. N. Rom and J. G. Hay, Wild-type adenovirus decreases tumor xenograft growth, but despite viral persistence complete tumor responses are rarely achieved-deletion of the viral E1b-19-kD gene increases the viral oncolytic effect,, Hum. Gene. Ther., 12 (2001), 1323.  doi: 10.1089/104303401750270977.  Google Scholar

[17]

P. J. Kelly, C. Daumas-Duport, D. B. Kispert, B. A. Kall, B. W. Scheithaurer and J. J. Illig, Imaging-based sterotaxic serial biopsies in untreated intracranial glial neoplasms,, J. Neurosurg., 66 (1987), 865.  doi: 10.3171/jns.1987.66.6.0865.  Google Scholar

[18]

R. M. Lorence, A. L. Pecora, P. P. Major, S. J. Hotte, S. A. Laurie, M. S. Roberts, W. S. Groene and M. K. Bamat, Overview of phase I studies of intravenous administration of PV701, an oncolytic virus,, Curr. Opin. Mol. Ther., 5 (2003), 618.   Google Scholar

[19]

D. Makower, A. Rozenblit, H. Kaufman, M. Edelman, M. E. Lane, J. Zwiebel, H. Haynes and S. Wadler, Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies,, Clin. Cancer Res., 9 (2003), 693.   Google Scholar

[20]

E. Mandonnet, J. Y. Delattre, M. L. Tanguy, K. R. Swanson, A. F. Carpentier, H. Duffau, P. Cornu, R. Van Effenterre, E. C. Alvord, Jr. and L. Capelle, Continuous growth of mean tumor diameter in a subset of grade II gliomas,, Ann. Neurol., 53 (2003), 524.   Google Scholar

[21]

J. D. Murray, "Mathematical Biology II. Spatial Models and Biological Applications,", 3rd edition, (2003).   Google Scholar

[22]

A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin and G. P. Karev, Mathematical modeling of tumor therapy with oncolytic viruses: Regimes with complete tumor elimination within the framework of deterministic models,, Biology Direct, 1 (2006), 1.   Google Scholar

[23]

G. Paganelli, M. Bartolomei, C. Grana, M. Ferrari, P. Rocca and M. Chinol, Radioimmunotherapy of brain tumor,, Neurol. Res., 28 (2006), 518.   Google Scholar

[24]

J. Pallud, E. Mandonnet, H. Duffau, M. Kujas, R. Guillevin, D. Galanaud, L. Taillandier and L. Capelle, Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas,, Ann. Neurol., 60 (2006), 380.   Google Scholar

[25]

J. Peiffer, P. Kleihues and H. J. Scherer, Hans-Joachim Scherer (1906-1945), Pioneer in glioma research,, Brain Pathol., 9 (1999), 241.   Google Scholar

[26]

R. Rockne, J. K. Rockhill, M. Mrugala M, A. M. Spence, I. Kalet, K. Hendrickson, A. Lai, T. Cloughesy, E. C. Alvord and K. R. Swanson, Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: A mathematical modeling approach,, Phys. Med. Biol., 55 (2010), 3271.   Google Scholar

[27]

D. C. Shrieve, E. Alexander III, P. Y. Wen, H. M. Kooy, P. M. Blackand and J. S. Loeffler, Comparison of sterotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme,, Neurosurgery, 36 (1995), 275.   Google Scholar

[28]

D. L. Silbergeld and M. R. Chicoine, Isolation and characterization of human malignant glioma cells from histologically normal brain,, J. Neurosurg., 86 (1997), 525.   Google Scholar

[29]

K. R. Swanson, C. Bridge, J. D. Murray and E. C. Alvord Jr., Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion,, J. Neurolog. Sci., 216 (2003), 1.   Google Scholar

[30]

K. R. Swanson, R. C. Rostomily and E. C. Alvord Jr., A mathematical modeling tool for predicting the survival of individual patients following resection of glioblastoma: A proof of principle,, Br. J. Cancer, 98 (2008), 113.   Google Scholar

[31]

T. Takayanagi and A. Ohuchi, A Mathematical analysis of the interactions between immunogenic cells and cytotoxic T Lymphocytes,, Microbiol. Immunol., 45 (2001), 709.   Google Scholar

[32]

Y. Tao and Q. Guo, A mathematical model of combined therapies against cancer using viruses and inhibitors,, Science in China Series A: Mathematics, 51 (2008), 2315.  doi: 10.1007/s11425-008-0070-7.  Google Scholar

[33]

L. Wang and M. Y. Li, Diffusion-driven instability in reaction-diffusion systems,, J. Math. Analysis and Applications, 254 (2001), 138.  doi: 10.1006/jmaa.2000.7220.  Google Scholar

[34]

D. Wodarz and N. Komarova, "Computational Biology of Cancer: Lecture Notes and Mathematical Modeling,", World Scientific Publishing Company, (2005).   Google Scholar

[35]

D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission,, Cancer Res., 61 (2001), 3501.   Google Scholar

[36]

D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection,, PLoS ONE, 4 (2009).  doi: 10.1371/journal.pone.0004271.  Google Scholar

[37]

J. T. Wu, H. M. Byrne, D. H. Kirn and L. M. Wein, Modeling and analysis of a virus that replicates selectively in tumor cells,, Bull. Math. Biol., 63 (2001), 731.   Google Scholar

[38]

J. T. Wu, D. H. Kirn and L. M. Wein, Analysis of a three-way race between tumor growth, a replication- competent virus and an immune response,, Bull. Math. Biol., 66 (2004), 605.  doi: 10.1016/j.bulm.2003.08.016.  Google Scholar

[39]

R. Zurakowskia and D. Wodarz, Model-driven approaches for in vitro combination therapy using ONYX-015 replicating oncolytic adenovirus,, J. Theor. Biol., 245 (2007), 1.  doi: 10.1016/j.jtbi.2006.09.029.  Google Scholar

show all references

References:
[1]

E. C. Alvord Jr and C. M. Shaw, Neoplasms affecting the nervous system of the elderly,, in, (1991), 210.   Google Scholar

[2]

D. D. Barker and A. J. Berk, Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection,, Virology, 156 (1987), 107.  doi: 10.1016/0042-6822(87)90441-7.  Google Scholar

[3]

N. Bagheri, M. Shiina, D. A. Lauffenburger and W. M. Korn, A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-Inhibition,, PLoS Comput. Biol., 7 (2011).  doi: 10.1371/journal.pcbi.1001085.  Google Scholar

[4]

F. G. Blankenberg, R. L. Teplitz, W. Ellis, M. S. Salamat, B. H. Min, L. Hall, D. B. Boothroyd, I. M. Johnstone and D. R. Enzmann, The influence of volumetric tumor doubling time, DNA ploidy, and histologic grade on the survival of patients with intracranial astrocytomas,, AJNR Am. J. Neuroradiol, 16 (1995), 1001.   Google Scholar

[5]

P. C. Burger, E. R. Heinz, T. Shibata and P. Kleihues, Topographic anatomy and CT correlations in the untreated glioblastoma multiforme,, J. Neurosurg, 68 (1988), 698.  doi: 10.3171/jns.1988.68.5.0698.  Google Scholar

[6]

B. I. Camara and H. Mokrani, Analysis of wave solutions of an adhenovirus-tumor cell system,, Abstract and Applied Analysis, (2012), 1.  doi: 10.1155/2012/590326.  Google Scholar

[7]

G. Cherubini, T. Petouchoff, M. Grossi, S. Piersanti, E. Cundari and I. Saggio, E1B55K-deleted adenovirus (ONYX-015) overrides G1/S and G2/M checkpoints and causes mitotic catastrophe and endoreduplication in p53-proficient normal cells,, Cell Cycle, 5 (2006), 2244.   Google Scholar

[8]

An. Claes, A. J. Idema and P. Wesseling, Diffuse glioma growth: A guerilla war,, Acta Neuropathol, 114 (2007), 443.  doi: 10.1007/s00401-007-0293-7.  Google Scholar

[9]

J. C. Concannon, S. Kramer S and R. Berry, The extent of intracranial gliomata at autopsy and its relation to techniques used in radiation therapy of brain tumors,, Am. J. Roentgenol. Radium Ther. Nucl. Med., 84 (1960), 99.   Google Scholar

[10]

L. K. Csatary, G. Gosztonyi, J. Szeberenyi, Z. Fabian, V. Liszka, B. Bodey and C. M. Csatary, MTH-68/H oncolytic viral treatment in human high-grade gliomas,, J. Neurooncol, 67 (2004), 83.  doi: 10.1023/B:NEON.0000021735.85511.05.  Google Scholar

[11]

K. J. Excoffon, G. L. Traver and J. Zabner, The role of the extracellular domain in the biology of the coxsackievirus and adenovirus receptor,, Am. J. Respir. Cell Mol. Biol., 32 (2005), 498.  doi: 10.1165/rcmb.2005-0031OC.  Google Scholar

[12]

E. Fan, Extended tanh-function method and its applications to nonlinear equations,, Phys. Lett. A, 277 (2000), 212.  doi: 10.1016/S0375-9601(00)00725-8.  Google Scholar

[13]

A. Friedman and Y. Tao, Analysis of a model of a virus that replicates selectively in tumor cells,, J. Math. Biol., 47 (2003), 391.  doi: 10.1007/s00285-003-0199-5.  Google Scholar

[14]

X. Ge and M. Arcak, A new sufficient condition for additive D-stability and application to cyclic reaction-diffusion models,, American Control Conference, (2009), 2904.  doi: 10.1109/ACC.2009.5160022.  Google Scholar

[15]

H. L. Harpold, E. C. Alvord Jr. and K. R. Swanson, The evolution of mathematical modeling of glioma proliferation and invasion,, J. Neuropathol. Exp. Neurol., 66 (2007), 1.  doi: 10.1097/nen.0b013e31802d9000.  Google Scholar

[16]

D. Harrison, H. Sauthoff, S. Heitner, J. Jagirdar, W. N. Rom and J. G. Hay, Wild-type adenovirus decreases tumor xenograft growth, but despite viral persistence complete tumor responses are rarely achieved-deletion of the viral E1b-19-kD gene increases the viral oncolytic effect,, Hum. Gene. Ther., 12 (2001), 1323.  doi: 10.1089/104303401750270977.  Google Scholar

[17]

P. J. Kelly, C. Daumas-Duport, D. B. Kispert, B. A. Kall, B. W. Scheithaurer and J. J. Illig, Imaging-based sterotaxic serial biopsies in untreated intracranial glial neoplasms,, J. Neurosurg., 66 (1987), 865.  doi: 10.3171/jns.1987.66.6.0865.  Google Scholar

[18]

R. M. Lorence, A. L. Pecora, P. P. Major, S. J. Hotte, S. A. Laurie, M. S. Roberts, W. S. Groene and M. K. Bamat, Overview of phase I studies of intravenous administration of PV701, an oncolytic virus,, Curr. Opin. Mol. Ther., 5 (2003), 618.   Google Scholar

[19]

D. Makower, A. Rozenblit, H. Kaufman, M. Edelman, M. E. Lane, J. Zwiebel, H. Haynes and S. Wadler, Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies,, Clin. Cancer Res., 9 (2003), 693.   Google Scholar

[20]

E. Mandonnet, J. Y. Delattre, M. L. Tanguy, K. R. Swanson, A. F. Carpentier, H. Duffau, P. Cornu, R. Van Effenterre, E. C. Alvord, Jr. and L. Capelle, Continuous growth of mean tumor diameter in a subset of grade II gliomas,, Ann. Neurol., 53 (2003), 524.   Google Scholar

[21]

J. D. Murray, "Mathematical Biology II. Spatial Models and Biological Applications,", 3rd edition, (2003).   Google Scholar

[22]

A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin and G. P. Karev, Mathematical modeling of tumor therapy with oncolytic viruses: Regimes with complete tumor elimination within the framework of deterministic models,, Biology Direct, 1 (2006), 1.   Google Scholar

[23]

G. Paganelli, M. Bartolomei, C. Grana, M. Ferrari, P. Rocca and M. Chinol, Radioimmunotherapy of brain tumor,, Neurol. Res., 28 (2006), 518.   Google Scholar

[24]

J. Pallud, E. Mandonnet, H. Duffau, M. Kujas, R. Guillevin, D. Galanaud, L. Taillandier and L. Capelle, Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas,, Ann. Neurol., 60 (2006), 380.   Google Scholar

[25]

J. Peiffer, P. Kleihues and H. J. Scherer, Hans-Joachim Scherer (1906-1945), Pioneer in glioma research,, Brain Pathol., 9 (1999), 241.   Google Scholar

[26]

R. Rockne, J. K. Rockhill, M. Mrugala M, A. M. Spence, I. Kalet, K. Hendrickson, A. Lai, T. Cloughesy, E. C. Alvord and K. R. Swanson, Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: A mathematical modeling approach,, Phys. Med. Biol., 55 (2010), 3271.   Google Scholar

[27]

D. C. Shrieve, E. Alexander III, P. Y. Wen, H. M. Kooy, P. M. Blackand and J. S. Loeffler, Comparison of sterotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme,, Neurosurgery, 36 (1995), 275.   Google Scholar

[28]

D. L. Silbergeld and M. R. Chicoine, Isolation and characterization of human malignant glioma cells from histologically normal brain,, J. Neurosurg., 86 (1997), 525.   Google Scholar

[29]

K. R. Swanson, C. Bridge, J. D. Murray and E. C. Alvord Jr., Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion,, J. Neurolog. Sci., 216 (2003), 1.   Google Scholar

[30]

K. R. Swanson, R. C. Rostomily and E. C. Alvord Jr., A mathematical modeling tool for predicting the survival of individual patients following resection of glioblastoma: A proof of principle,, Br. J. Cancer, 98 (2008), 113.   Google Scholar

[31]

T. Takayanagi and A. Ohuchi, A Mathematical analysis of the interactions between immunogenic cells and cytotoxic T Lymphocytes,, Microbiol. Immunol., 45 (2001), 709.   Google Scholar

[32]

Y. Tao and Q. Guo, A mathematical model of combined therapies against cancer using viruses and inhibitors,, Science in China Series A: Mathematics, 51 (2008), 2315.  doi: 10.1007/s11425-008-0070-7.  Google Scholar

[33]

L. Wang and M. Y. Li, Diffusion-driven instability in reaction-diffusion systems,, J. Math. Analysis and Applications, 254 (2001), 138.  doi: 10.1006/jmaa.2000.7220.  Google Scholar

[34]

D. Wodarz and N. Komarova, "Computational Biology of Cancer: Lecture Notes and Mathematical Modeling,", World Scientific Publishing Company, (2005).   Google Scholar

[35]

D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission,, Cancer Res., 61 (2001), 3501.   Google Scholar

[36]

D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection,, PLoS ONE, 4 (2009).  doi: 10.1371/journal.pone.0004271.  Google Scholar

[37]

J. T. Wu, H. M. Byrne, D. H. Kirn and L. M. Wein, Modeling and analysis of a virus that replicates selectively in tumor cells,, Bull. Math. Biol., 63 (2001), 731.   Google Scholar

[38]

J. T. Wu, D. H. Kirn and L. M. Wein, Analysis of a three-way race between tumor growth, a replication- competent virus and an immune response,, Bull. Math. Biol., 66 (2004), 605.  doi: 10.1016/j.bulm.2003.08.016.  Google Scholar

[39]

R. Zurakowskia and D. Wodarz, Model-driven approaches for in vitro combination therapy using ONYX-015 replicating oncolytic adenovirus,, J. Theor. Biol., 245 (2007), 1.  doi: 10.1016/j.jtbi.2006.09.029.  Google Scholar

[1]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[2]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[3]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[4]

Adam Glick, Antonio Mastroberardino. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020343

[5]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[6]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[7]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[8]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[9]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[13]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[14]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[15]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[16]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[17]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[18]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[19]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[20]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (9)

[Back to Top]