2013, 10(3): 565-578. doi: 10.3934/mbe.2013.10.565

Mathematical modeling of glioma therapy using oncolytic viruses

1. 

Laboratoire Interdisciplinaire des Environnements Continentaux, Université de Lorraine, CNRS UMR 7360, 8 rue du Général Delestraint, 57070 METZ, France

2. 

Laboratoire de Mathématiques Raphaël Salem, Université de Rouen, UMR 6085 CNRS, Avenue de l'Université, 76801 Saint Etienne du Rouvray, France

3. 

Department of Mathematics, Elmhurst College, 190 Prospect Avenue, Elmhurst, IL 60126, United States

Received  June 2012 Revised  February 2013 Published  April 2013

Diffuse infiltrative gliomas are adjudged to be the most common primary brain tumors in adults and they tend to blend in extensively in the brain micro-environment. This makes it difficult for medical practitioners to successfully plan effective treatments. In attempts to prolong the lengths of survival times for patients with malignant brain tumors, novel therapeutic alternatives such as gene therapy with oncolytic viruses are currently being explored. Based on such approaches and existing work, a spatio-temporal model that describes interaction between tumor cells and oncolytic viruses is developed. Conditions that lead to optimal therapy in minimizing cancer cell proliferation and otherwise are analytically demonstrated. Numerical simulations are conducted with the aim of showing the impact of virotherapy on proliferation or invasion of cancer cells and of estimating survival times.
Citation: Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565
References:
[1]

in "The Pathology of the Aging Human Nervous System" (ed. S. Duckett), Lea and Fabiger, Philadelphia, (1991), 210-286. Google Scholar

[2]

Virology, 156 (1987), 107-121. doi: 10.1016/0042-6822(87)90441-7.  Google Scholar

[3]

PLoS Comput. Biol., 7 (2011), e1001085. doi: 10.1371/journal.pcbi.1001085.  Google Scholar

[4]

AJNR Am. J. Neuroradiol, 16 (1995), 1001-1012. Google Scholar

[5]

J. Neurosurg, 68 (1988), 698-704. doi: 10.3171/jns.1988.68.5.0698.  Google Scholar

[6]

Abstract and Applied Analysis, (ID 590326), (2012), 1-13. doi: 10.1155/2012/590326.  Google Scholar

[7]

Cell Cycle, 5 (2006), 2244-2252. Google Scholar

[8]

Acta Neuropathol, 114 (2007), 443-458. doi: 10.1007/s00401-007-0293-7.  Google Scholar

[9]

Am. J. Roentgenol. Radium Ther. Nucl. Med., 84 (1960), 99-107. Google Scholar

[10]

J. Neurooncol, 67 (2004), 83-93. doi: 10.1023/B:NEON.0000021735.85511.05.  Google Scholar

[11]

Am. J. Respir. Cell Mol. Biol., 32 (2005), 498-503. doi: 10.1165/rcmb.2005-0031OC.  Google Scholar

[12]

Phys. Lett. A, 277 (2000), 212-218. doi: 10.1016/S0375-9601(00)00725-8.  Google Scholar

[13]

J. Math. Biol., 47 (2003), 391-423. doi: 10.1007/s00285-003-0199-5.  Google Scholar

[14]

American Control Conference, (2009), 2904-2909. doi: 10.1109/ACC.2009.5160022.  Google Scholar

[15]

J. Neuropathol. Exp. Neurol., 66 (2007), 1-9. doi: 10.1097/nen.0b013e31802d9000.  Google Scholar

[16]

Hum. Gene. Ther., 12 (2001), 1323-1332. doi: 10.1089/104303401750270977.  Google Scholar

[17]

J. Neurosurg., 66 (1987), 865-874. doi: 10.3171/jns.1987.66.6.0865.  Google Scholar

[18]

Curr. Opin. Mol. Ther., 5 (2003), 618-624. Google Scholar

[19]

Clin. Cancer Res., 9 (2003), 693-702. Google Scholar

[20]

Ann. Neurol., 53 (2003), 524-528. Google Scholar

[21]

3rd edition, Springer-Verlag, New York, 2003.  Google Scholar

[22]

Biology Direct, 1 (2006), 1-18. Google Scholar

[23]

Neurol. Res., 28 (2006), 518-522. Google Scholar

[24]

Ann. Neurol., 60 (2006), 380-383. Google Scholar

[25]

Brain Pathol., 9 (1999), 241-245. Google Scholar

[26]

Phys. Med. Biol., 55 (2010), 3271-3285. Google Scholar

[27]

Neurosurgery, 36 (1995), 275-282. Google Scholar

[28]

J. Neurosurg., 86 (1997), 525-531. Google Scholar

[29]

J. Neurolog. Sci., 216 (2003), 1-10. Google Scholar

[30]

Br. J. Cancer, 98 (2008), 113-119. Google Scholar

[31]

Microbiol. Immunol., 45 (2001), 709-715. Google Scholar

[32]

Science in China Series A: Mathematics, 51 (2008), 2315-2329. doi: 10.1007/s11425-008-0070-7.  Google Scholar

[33]

J. Math. Analysis and Applications, 254 (2001), 138-153. doi: 10.1006/jmaa.2000.7220.  Google Scholar

[34]

World Scientific Publishing Company, Singapore, 2005. Google Scholar

[35]

Cancer Res., 61 (2001), 3501-3507. Google Scholar

[36]

PLoS ONE, 4 (2009), e4271. doi: 10.1371/journal.pone.0004271.  Google Scholar

[37]

Bull. Math. Biol., 63 (2001), 731-768. Google Scholar

[38]

Bull. Math. Biol., 66 (2004), 605-625. doi: 10.1016/j.bulm.2003.08.016.  Google Scholar

[39]

J. Theor. Biol., 245 (2007), 1-8. doi: 10.1016/j.jtbi.2006.09.029.  Google Scholar

show all references

References:
[1]

in "The Pathology of the Aging Human Nervous System" (ed. S. Duckett), Lea and Fabiger, Philadelphia, (1991), 210-286. Google Scholar

[2]

Virology, 156 (1987), 107-121. doi: 10.1016/0042-6822(87)90441-7.  Google Scholar

[3]

PLoS Comput. Biol., 7 (2011), e1001085. doi: 10.1371/journal.pcbi.1001085.  Google Scholar

[4]

AJNR Am. J. Neuroradiol, 16 (1995), 1001-1012. Google Scholar

[5]

J. Neurosurg, 68 (1988), 698-704. doi: 10.3171/jns.1988.68.5.0698.  Google Scholar

[6]

Abstract and Applied Analysis, (ID 590326), (2012), 1-13. doi: 10.1155/2012/590326.  Google Scholar

[7]

Cell Cycle, 5 (2006), 2244-2252. Google Scholar

[8]

Acta Neuropathol, 114 (2007), 443-458. doi: 10.1007/s00401-007-0293-7.  Google Scholar

[9]

Am. J. Roentgenol. Radium Ther. Nucl. Med., 84 (1960), 99-107. Google Scholar

[10]

J. Neurooncol, 67 (2004), 83-93. doi: 10.1023/B:NEON.0000021735.85511.05.  Google Scholar

[11]

Am. J. Respir. Cell Mol. Biol., 32 (2005), 498-503. doi: 10.1165/rcmb.2005-0031OC.  Google Scholar

[12]

Phys. Lett. A, 277 (2000), 212-218. doi: 10.1016/S0375-9601(00)00725-8.  Google Scholar

[13]

J. Math. Biol., 47 (2003), 391-423. doi: 10.1007/s00285-003-0199-5.  Google Scholar

[14]

American Control Conference, (2009), 2904-2909. doi: 10.1109/ACC.2009.5160022.  Google Scholar

[15]

J. Neuropathol. Exp. Neurol., 66 (2007), 1-9. doi: 10.1097/nen.0b013e31802d9000.  Google Scholar

[16]

Hum. Gene. Ther., 12 (2001), 1323-1332. doi: 10.1089/104303401750270977.  Google Scholar

[17]

J. Neurosurg., 66 (1987), 865-874. doi: 10.3171/jns.1987.66.6.0865.  Google Scholar

[18]

Curr. Opin. Mol. Ther., 5 (2003), 618-624. Google Scholar

[19]

Clin. Cancer Res., 9 (2003), 693-702. Google Scholar

[20]

Ann. Neurol., 53 (2003), 524-528. Google Scholar

[21]

3rd edition, Springer-Verlag, New York, 2003.  Google Scholar

[22]

Biology Direct, 1 (2006), 1-18. Google Scholar

[23]

Neurol. Res., 28 (2006), 518-522. Google Scholar

[24]

Ann. Neurol., 60 (2006), 380-383. Google Scholar

[25]

Brain Pathol., 9 (1999), 241-245. Google Scholar

[26]

Phys. Med. Biol., 55 (2010), 3271-3285. Google Scholar

[27]

Neurosurgery, 36 (1995), 275-282. Google Scholar

[28]

J. Neurosurg., 86 (1997), 525-531. Google Scholar

[29]

J. Neurolog. Sci., 216 (2003), 1-10. Google Scholar

[30]

Br. J. Cancer, 98 (2008), 113-119. Google Scholar

[31]

Microbiol. Immunol., 45 (2001), 709-715. Google Scholar

[32]

Science in China Series A: Mathematics, 51 (2008), 2315-2329. doi: 10.1007/s11425-008-0070-7.  Google Scholar

[33]

J. Math. Analysis and Applications, 254 (2001), 138-153. doi: 10.1006/jmaa.2000.7220.  Google Scholar

[34]

World Scientific Publishing Company, Singapore, 2005. Google Scholar

[35]

Cancer Res., 61 (2001), 3501-3507. Google Scholar

[36]

PLoS ONE, 4 (2009), e4271. doi: 10.1371/journal.pone.0004271.  Google Scholar

[37]

Bull. Math. Biol., 63 (2001), 731-768. Google Scholar

[38]

Bull. Math. Biol., 66 (2004), 605-625. doi: 10.1016/j.bulm.2003.08.016.  Google Scholar

[39]

J. Theor. Biol., 245 (2007), 1-8. doi: 10.1016/j.jtbi.2006.09.029.  Google Scholar

[1]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[2]

Pankaj Kumar Tiwari, Rajesh Kumar Singh, Subhas Khajanchi, Yun Kang, Arvind Kumar Misra. A mathematical model to restore water quality in urban lakes using Phoslock. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3143-3175. doi: 10.3934/dcdsb.2020223

[3]

Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021092

[4]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[5]

Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021010

[6]

José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005

[7]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[8]

Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, 2021, 15 (3) : 555-597. doi: 10.3934/ipi.2021005

[9]

Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050

[10]

Melis Alpaslan Takan, Refail Kasimbeyli. Multiobjective mathematical models and solution approaches for heterogeneous fixed fleet vehicle routing problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2073-2095. doi: 10.3934/jimo.2020059

[11]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[12]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[13]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[14]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[15]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[16]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[17]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[18]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[19]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[20]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (9)

[Back to Top]