-
Previous Article
A partial differential equation model of metastasized prostatic cancer
- MBE Home
- This Issue
-
Next Article
Mathematical modeling of glioma therapy using oncolytic viruses
Identifying preseizure state in intracranial EEG data using diffusion kernels
1. | 101 AKW, 51 Prospect St. New Haven, CT 06511, United States |
2. | 103 AKW, 51 Prospect St. New Haven, CT 06511, United States |
3. | 716 LLCI, 15 York St. New Haven, CT 06520, United States |
4. | 108A AKW, 51 Prospect St. New Haven, CT 06511, United States |
  The algorithm is tested on icEEG data recorded from several electrode contacts from a patient being evaluated for possible epilepsy surgery at the Yale-New Haven Hospital. Numerical results show that the proposed approach provides a distinction between interictal and preseizure states.
References:
[1] |
R. G. Andrzejak, F. Mormann, R. Kreuz, C. Rieke, A. Kraskov, C. E. Elger and K. Lehnertz, Testing the null hypothesis of the nonexistence of a preseizure state, Phys. Rev. E, 67 (2003), 10901.
doi: 10.1103/PhysRevE.67.010901. |
[2] |
J. Britz, D. Van De Ville and C. M. Michel, BOLD correlates of EEG topography reveal rapid resting-state network dynamics, NeuroImage, 52 (2010), 1162-1170.
doi: 10.1016/j.neuroimage.2010.02.052. |
[3] |
R. R. Coifman and S. Lafon, Diffusion maps, Appl. Comp. Harm. Anal., 21 (2006), 5-30.
doi: 10.1016/j.acha.2006.04.006. |
[4] |
D. Duncan, R. B. Duckrow, R. R. Coifman and H. P. Zaveri, Intracranial EEG Evaluation of a Resting State Network, Challenges of Modern Technology, 1 (2010), 27-29. |
[5] |
M. G. Frei, H. P. Zaveri, S. Arthurs, G. K. Bergey, C. C. Jouny, K. Lehnertz, J. Gotman, I. Osorio, T. I. Netoff, W. J. Freeman, J. Jefferys, G. Worrell, M. Le Van Quyen, S. J. Schiff and F. Mormann, Controversies in epilepsy: Debates held during the fourth international workshop on seizure prediction, Epilepsy and Behavior, 19 (2010), 4-16.
doi: 10.1016/j.yebeh.2010.06.009. |
[6] |
I. I. Goncharova, H. P. Zaveri, R. B. Duckrow, E. J. Novotny and S. S. Spencer, Spatial distribution of intracranially recorded spikes in medial and lateral temporal epilepsies, Epilepsia, 50 (2009), 2575-85.
doi: 10.1111/j.1528-1167.2009.02258.x. |
[7] |
W. A. Hauser, J. F. Annegers and W. A. Rocca, Descriptive epidemiology of epilepsy: Contributions of population-based studies from Rochester, Minnesota, Mayo. Clin. Proc., 71 (1996), 576-586.
doi: 10.4065/71.6.576. |
[8] |
D. Kushnir, A. Haddad and R. R. Coifman, Anisotropic diffusion on sub-manifolds with application to earth structure classification, Appl. Comp. Harm. Anal., 32 (2012), 280-294.
doi: 10.1016/j.acha.2011.06.002. |
[9] |
P. Kwan and M. J. Brodie, Early identification of refractory epilepsy, N. Engl. J. Med., 342 (2000), 314-319.
doi: 10.1056/NEJM200002033420503. |
[10] |
F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road, Brain, 130 (2007), 314-333.
doi: 10.1093/brain/awl241. |
[11] |
X. Papademetris, A. P. Jackowski, R. T. Schultz, L. H. Staib and J. S. Duncan, Integrated intensity and point-feature non-rigid registration, in "Medical Image Computing and Computer-Assisted Intervention" (Eds. C. Barillot, D. Haynor and P. Hellier) Saint-Malo: Springer, (2004), 763-770. |
[12] |
M. R. Portnoff, Time-frequency representation of digital signals and systems based on short-time Fourier analysis, IEEE Trans. Signal Process, ASSP-28, 55-69.
doi: 10.1109/TASSP.1980.1163359. |
[13] |
A. Schulze-Bonhage, H. Feldwisch-Drentrup and M. Ihle, Epilepsy and behavior, Elsevier, 22 (2011), S88-S93.
doi: 10.1016/j.yebeh.2003.11.021. |
[14] |
A. Singer and R. R. Coifman, Non-linear independent component analysis with diffusion maps, Appl. Comp. Harm. Anal., 25 (2008), 226-239.
doi: 10.1016/j.acha.2007.11.001. |
[15] |
E. Susman, Brain stimulation reduces seizures in refractory adult epilepsy, Neurology Today, 9 (2009), 22-23.
doi: 10.1097/01.NT.0000345158.91024.42. |
[16] |
R. Talmon and R. R. Coifman, Differential stochastic sensing: intrinsic modeling of random time series with applications to nonlinear tracking, submitted to PNAS, (2012). |
[17] |
R. Talmon, D. Kushnir, R. R. Coifman, I. Cohen and S. Gannot, Parametrization of linear systems using diffusion kernels, IEEE Trans. Signal Process, 60 (2012).
doi: 10.1109/TSP.2011.2177973. |
show all references
References:
[1] |
R. G. Andrzejak, F. Mormann, R. Kreuz, C. Rieke, A. Kraskov, C. E. Elger and K. Lehnertz, Testing the null hypothesis of the nonexistence of a preseizure state, Phys. Rev. E, 67 (2003), 10901.
doi: 10.1103/PhysRevE.67.010901. |
[2] |
J. Britz, D. Van De Ville and C. M. Michel, BOLD correlates of EEG topography reveal rapid resting-state network dynamics, NeuroImage, 52 (2010), 1162-1170.
doi: 10.1016/j.neuroimage.2010.02.052. |
[3] |
R. R. Coifman and S. Lafon, Diffusion maps, Appl. Comp. Harm. Anal., 21 (2006), 5-30.
doi: 10.1016/j.acha.2006.04.006. |
[4] |
D. Duncan, R. B. Duckrow, R. R. Coifman and H. P. Zaveri, Intracranial EEG Evaluation of a Resting State Network, Challenges of Modern Technology, 1 (2010), 27-29. |
[5] |
M. G. Frei, H. P. Zaveri, S. Arthurs, G. K. Bergey, C. C. Jouny, K. Lehnertz, J. Gotman, I. Osorio, T. I. Netoff, W. J. Freeman, J. Jefferys, G. Worrell, M. Le Van Quyen, S. J. Schiff and F. Mormann, Controversies in epilepsy: Debates held during the fourth international workshop on seizure prediction, Epilepsy and Behavior, 19 (2010), 4-16.
doi: 10.1016/j.yebeh.2010.06.009. |
[6] |
I. I. Goncharova, H. P. Zaveri, R. B. Duckrow, E. J. Novotny and S. S. Spencer, Spatial distribution of intracranially recorded spikes in medial and lateral temporal epilepsies, Epilepsia, 50 (2009), 2575-85.
doi: 10.1111/j.1528-1167.2009.02258.x. |
[7] |
W. A. Hauser, J. F. Annegers and W. A. Rocca, Descriptive epidemiology of epilepsy: Contributions of population-based studies from Rochester, Minnesota, Mayo. Clin. Proc., 71 (1996), 576-586.
doi: 10.4065/71.6.576. |
[8] |
D. Kushnir, A. Haddad and R. R. Coifman, Anisotropic diffusion on sub-manifolds with application to earth structure classification, Appl. Comp. Harm. Anal., 32 (2012), 280-294.
doi: 10.1016/j.acha.2011.06.002. |
[9] |
P. Kwan and M. J. Brodie, Early identification of refractory epilepsy, N. Engl. J. Med., 342 (2000), 314-319.
doi: 10.1056/NEJM200002033420503. |
[10] |
F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road, Brain, 130 (2007), 314-333.
doi: 10.1093/brain/awl241. |
[11] |
X. Papademetris, A. P. Jackowski, R. T. Schultz, L. H. Staib and J. S. Duncan, Integrated intensity and point-feature non-rigid registration, in "Medical Image Computing and Computer-Assisted Intervention" (Eds. C. Barillot, D. Haynor and P. Hellier) Saint-Malo: Springer, (2004), 763-770. |
[12] |
M. R. Portnoff, Time-frequency representation of digital signals and systems based on short-time Fourier analysis, IEEE Trans. Signal Process, ASSP-28, 55-69.
doi: 10.1109/TASSP.1980.1163359. |
[13] |
A. Schulze-Bonhage, H. Feldwisch-Drentrup and M. Ihle, Epilepsy and behavior, Elsevier, 22 (2011), S88-S93.
doi: 10.1016/j.yebeh.2003.11.021. |
[14] |
A. Singer and R. R. Coifman, Non-linear independent component analysis with diffusion maps, Appl. Comp. Harm. Anal., 25 (2008), 226-239.
doi: 10.1016/j.acha.2007.11.001. |
[15] |
E. Susman, Brain stimulation reduces seizures in refractory adult epilepsy, Neurology Today, 9 (2009), 22-23.
doi: 10.1097/01.NT.0000345158.91024.42. |
[16] |
R. Talmon and R. R. Coifman, Differential stochastic sensing: intrinsic modeling of random time series with applications to nonlinear tracking, submitted to PNAS, (2012). |
[17] |
R. Talmon, D. Kushnir, R. R. Coifman, I. Cohen and S. Gannot, Parametrization of linear systems using diffusion kernels, IEEE Trans. Signal Process, 60 (2012).
doi: 10.1109/TSP.2011.2177973. |
[1] |
Dominique Duncan, Paul Vespa, Arthur W. Toga. Detecting features of epileptogenesis in EEG after TBI using unsupervised diffusion component analysis. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 161-172. doi: 10.3934/dcdsb.2018010 |
[2] |
Marko Filipović, Ivica Kopriva. A comparison of dictionary based approaches to inpainting and denoising with an emphasis to independent component analysis learned dictionaries. Inverse Problems and Imaging, 2011, 5 (4) : 815-841. doi: 10.3934/ipi.2011.5.815 |
[3] |
Dominique Duncan, Thomas Strohmer. Classification of Alzheimer's disease using unsupervised diffusion component analysis. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1119-1130. doi: 10.3934/mbe.2016033 |
[4] |
Hamed Azizollahi, Marion Darbas, Mohamadou M. Diallo, Abdellatif El Badia, Stephanie Lohrengel. EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity. Mathematical Biosciences & Engineering, 2018, 15 (4) : 905-932. doi: 10.3934/mbe.2018041 |
[5] |
Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2345-2366. doi: 10.3934/jimo.2020072 |
[6] |
Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations and Control Theory, 2022, 11 (2) : 439-455. doi: 10.3934/eect.2021007 |
[7] |
Amadeu Delshams, Rodrigo G. Schaefer. Arnold diffusion for a complete family of perturbations with two independent harmonics. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6047-6072. doi: 10.3934/dcds.2018261 |
[8] |
Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems and Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067 |
[9] |
Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357 |
[10] |
Costică Moroşanu. Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1567-1587. doi: 10.3934/dcdss.2020089 |
[11] |
G. A. Braga, Frederico Furtado, Jussara M. Moreira, Leonardo T. Rolla. Renormalization group analysis of nonlinear diffusion equations with time dependent coefficients: Analytical results. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 699-715. doi: 10.3934/dcdsb.2007.7.699 |
[12] |
Costică Moroşanu, Bianca Satco. Qualitative and quantitative analysis for a nonlocal and nonlinear reaction-diffusion problem with in-homogeneous Neumann boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022042 |
[13] |
Silviu Dumitru Pavăl, Alex Vasilică, Alin Adochiei. Qualitative and quantitative analysis of a nonlinear second-order anisotropic reaction-diffusion model of an epidemic infection spread. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022094 |
[14] |
Peter Ashwin, Xin-Chu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1533-1548. doi: 10.3934/dcds.2003.9.1533 |
[15] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061 |
[16] |
Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317 |
[17] |
Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305 |
[18] |
Shouming Zhou, Shanshan Zheng. Qualitative analysis for a new generalized 2-component Camassa-Holm system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4659-4675. doi: 10.3934/dcdss.2021132 |
[19] |
Mauro Maggioni, James M. Murphy. Learning by active nonlinear diffusion. Foundations of Data Science, 2019, 1 (3) : 271-291. doi: 10.3934/fods.2019012 |
[20] |
Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]