2013, 10(3): 579-590. doi: 10.3934/mbe.2013.10.579

Identifying preseizure state in intracranial EEG data using diffusion kernels

1. 

101 AKW, 51 Prospect St. New Haven, CT 06511, United States

2. 

103 AKW, 51 Prospect St. New Haven, CT 06511, United States

3. 

716 LLCI, 15 York St. New Haven, CT 06520, United States

4. 

108A AKW, 51 Prospect St. New Haven, CT 06511, United States

Received  July 2012 Revised  December 2012 Published  April 2013

The goal of this study is to identify preseizure changes in intracranial EEG (icEEG). A novel approach based on the recently developed diffusion map framework, which is considered to be one of the leading manifold learning methods, is proposed. Diffusion mapping provides dimensionality reduction of the data as well as pattern recognition that can be used to distinguish different states of the patient, for example, interictal and preseizure. A new algorithm, which is an extension of diffusion maps, is developed to construct coordinates that generate efficient geometric representations of the complex structures in the icEEG data. In addition, this method is adapted to the icEEG data and enables the extraction of the underlying brain activity.
    The algorithm is tested on icEEG data recorded from several electrode contacts from a patient being evaluated for possible epilepsy surgery at the Yale-New Haven Hospital. Numerical results show that the proposed approach provides a distinction between interictal and preseizure states.
Citation: Dominique Duncan, Ronen Talmon, Hitten P. Zaveri, Ronald R. Coifman. Identifying preseizure state in intracranial EEG data using diffusion kernels. Mathematical Biosciences & Engineering, 2013, 10 (3) : 579-590. doi: 10.3934/mbe.2013.10.579
References:
[1]

R. G. Andrzejak, F. Mormann, R. Kreuz, C. Rieke, A. Kraskov, C. E. Elger and K. Lehnertz, Testing the null hypothesis of the nonexistence of a preseizure state,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.010901.  Google Scholar

[2]

J. Britz, D. Van De Ville and C. M. Michel, BOLD correlates of EEG topography reveal rapid resting-state network dynamics,, NeuroImage, 52 (2010), 1162.  doi: 10.1016/j.neuroimage.2010.02.052.  Google Scholar

[3]

R. R. Coifman and S. Lafon, Diffusion maps,, Appl. Comp. Harm. Anal., 21 (2006), 5.  doi: 10.1016/j.acha.2006.04.006.  Google Scholar

[4]

D. Duncan, R. B. Duckrow, R. R. Coifman and H. P. Zaveri, Intracranial EEG Evaluation of a Resting State Network,, Challenges of Modern Technology, 1 (2010), 27.   Google Scholar

[5]

M. G. Frei, H. P. Zaveri, S. Arthurs, G. K. Bergey, C. C. Jouny, K. Lehnertz, J. Gotman, I. Osorio, T. I. Netoff, W. J. Freeman, J. Jefferys, G. Worrell, M. Le Van Quyen, S. J. Schiff and F. Mormann, Controversies in epilepsy: Debates held during the fourth international workshop on seizure prediction,, Epilepsy and Behavior, 19 (2010), 4.  doi: 10.1016/j.yebeh.2010.06.009.  Google Scholar

[6]

I. I. Goncharova, H. P. Zaveri, R. B. Duckrow, E. J. Novotny and S. S. Spencer, Spatial distribution of intracranially recorded spikes in medial and lateral temporal epilepsies,, Epilepsia, 50 (2009), 2575.  doi: 10.1111/j.1528-1167.2009.02258.x.  Google Scholar

[7]

W. A. Hauser, J. F. Annegers and W. A. Rocca, Descriptive epidemiology of epilepsy: Contributions of population-based studies from Rochester, Minnesota,, Mayo. Clin. Proc., 71 (1996), 576.  doi: 10.4065/71.6.576.  Google Scholar

[8]

D. Kushnir, A. Haddad and R. R. Coifman, Anisotropic diffusion on sub-manifolds with application to earth structure classification,, Appl. Comp. Harm. Anal., 32 (2012), 280.  doi: 10.1016/j.acha.2011.06.002.  Google Scholar

[9]

P. Kwan and M. J. Brodie, Early identification of refractory epilepsy,, N. Engl. J. Med., 342 (2000), 314.  doi: 10.1056/NEJM200002033420503.  Google Scholar

[10]

F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road,, Brain, 130 (2007), 314.  doi: 10.1093/brain/awl241.  Google Scholar

[11]

X. Papademetris, A. P. Jackowski, R. T. Schultz, L. H. Staib and J. S. Duncan, Integrated intensity and point-feature non-rigid registration,, in, (2004), 763.   Google Scholar

[12]

M. R. Portnoff, Time-frequency representation of digital signals and systems based on short-time Fourier analysis,, IEEE Trans. Signal Process, ASSP-28 (): 55.  doi: 10.1109/TASSP.1980.1163359.  Google Scholar

[13]

A. Schulze-Bonhage, H. Feldwisch-Drentrup and M. Ihle, Epilepsy and behavior,, Elsevier, 22 (2011).  doi: 10.1016/j.yebeh.2003.11.021.  Google Scholar

[14]

A. Singer and R. R. Coifman, Non-linear independent component analysis with diffusion maps,, Appl. Comp. Harm. Anal., 25 (2008), 226.  doi: 10.1016/j.acha.2007.11.001.  Google Scholar

[15]

E. Susman, Brain stimulation reduces seizures in refractory adult epilepsy,, Neurology Today, 9 (2009), 22.  doi: 10.1097/01.NT.0000345158.91024.42.  Google Scholar

[16]

R. Talmon and R. R. Coifman, Differential stochastic sensing: intrinsic modeling of random time series with applications to nonlinear tracking,, submitted to PNAS, (2012).   Google Scholar

[17]

R. Talmon, D. Kushnir, R. R. Coifman, I. Cohen and S. Gannot, Parametrization of linear systems using diffusion kernels,, IEEE Trans. Signal Process, 60 (2012).  doi: 10.1109/TSP.2011.2177973.  Google Scholar

show all references

References:
[1]

R. G. Andrzejak, F. Mormann, R. Kreuz, C. Rieke, A. Kraskov, C. E. Elger and K. Lehnertz, Testing the null hypothesis of the nonexistence of a preseizure state,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.010901.  Google Scholar

[2]

J. Britz, D. Van De Ville and C. M. Michel, BOLD correlates of EEG topography reveal rapid resting-state network dynamics,, NeuroImage, 52 (2010), 1162.  doi: 10.1016/j.neuroimage.2010.02.052.  Google Scholar

[3]

R. R. Coifman and S. Lafon, Diffusion maps,, Appl. Comp. Harm. Anal., 21 (2006), 5.  doi: 10.1016/j.acha.2006.04.006.  Google Scholar

[4]

D. Duncan, R. B. Duckrow, R. R. Coifman and H. P. Zaveri, Intracranial EEG Evaluation of a Resting State Network,, Challenges of Modern Technology, 1 (2010), 27.   Google Scholar

[5]

M. G. Frei, H. P. Zaveri, S. Arthurs, G. K. Bergey, C. C. Jouny, K. Lehnertz, J. Gotman, I. Osorio, T. I. Netoff, W. J. Freeman, J. Jefferys, G. Worrell, M. Le Van Quyen, S. J. Schiff and F. Mormann, Controversies in epilepsy: Debates held during the fourth international workshop on seizure prediction,, Epilepsy and Behavior, 19 (2010), 4.  doi: 10.1016/j.yebeh.2010.06.009.  Google Scholar

[6]

I. I. Goncharova, H. P. Zaveri, R. B. Duckrow, E. J. Novotny and S. S. Spencer, Spatial distribution of intracranially recorded spikes in medial and lateral temporal epilepsies,, Epilepsia, 50 (2009), 2575.  doi: 10.1111/j.1528-1167.2009.02258.x.  Google Scholar

[7]

W. A. Hauser, J. F. Annegers and W. A. Rocca, Descriptive epidemiology of epilepsy: Contributions of population-based studies from Rochester, Minnesota,, Mayo. Clin. Proc., 71 (1996), 576.  doi: 10.4065/71.6.576.  Google Scholar

[8]

D. Kushnir, A. Haddad and R. R. Coifman, Anisotropic diffusion on sub-manifolds with application to earth structure classification,, Appl. Comp. Harm. Anal., 32 (2012), 280.  doi: 10.1016/j.acha.2011.06.002.  Google Scholar

[9]

P. Kwan and M. J. Brodie, Early identification of refractory epilepsy,, N. Engl. J. Med., 342 (2000), 314.  doi: 10.1056/NEJM200002033420503.  Google Scholar

[10]

F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road,, Brain, 130 (2007), 314.  doi: 10.1093/brain/awl241.  Google Scholar

[11]

X. Papademetris, A. P. Jackowski, R. T. Schultz, L. H. Staib and J. S. Duncan, Integrated intensity and point-feature non-rigid registration,, in, (2004), 763.   Google Scholar

[12]

M. R. Portnoff, Time-frequency representation of digital signals and systems based on short-time Fourier analysis,, IEEE Trans. Signal Process, ASSP-28 (): 55.  doi: 10.1109/TASSP.1980.1163359.  Google Scholar

[13]

A. Schulze-Bonhage, H. Feldwisch-Drentrup and M. Ihle, Epilepsy and behavior,, Elsevier, 22 (2011).  doi: 10.1016/j.yebeh.2003.11.021.  Google Scholar

[14]

A. Singer and R. R. Coifman, Non-linear independent component analysis with diffusion maps,, Appl. Comp. Harm. Anal., 25 (2008), 226.  doi: 10.1016/j.acha.2007.11.001.  Google Scholar

[15]

E. Susman, Brain stimulation reduces seizures in refractory adult epilepsy,, Neurology Today, 9 (2009), 22.  doi: 10.1097/01.NT.0000345158.91024.42.  Google Scholar

[16]

R. Talmon and R. R. Coifman, Differential stochastic sensing: intrinsic modeling of random time series with applications to nonlinear tracking,, submitted to PNAS, (2012).   Google Scholar

[17]

R. Talmon, D. Kushnir, R. R. Coifman, I. Cohen and S. Gannot, Parametrization of linear systems using diffusion kernels,, IEEE Trans. Signal Process, 60 (2012).  doi: 10.1109/TSP.2011.2177973.  Google Scholar

[1]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[2]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[3]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[6]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[7]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[8]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[9]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[10]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[11]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[14]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[15]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020, 2 (4) : 351-390. doi: 10.3934/fods.2020017

[16]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[17]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[18]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[19]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[20]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (14)

[Back to Top]