• Previous Article
    An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix
  • MBE Home
  • This Issue
  • Next Article
    Distributed delays in a hybrid model of tumor-Immune system interplay
2013, 10(1): 59-73. doi: 10.3934/mbe.2013.10.59

Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells

1. 

Department of Mathematics and Informatics, University of Messina, Viale F. Stagno d'Alcontres n.31, 98166 Messina, Italy, Italy

2. 

Department I.C.I.E.A.M.A., University of Messina, Contrada Di Dio (S.Agata), 98166 Messina, Italy

Received  April 2012 Revised  September 2012 Published  December 2012

In a previous paper a mathematical model was developed for the dynamics of activation and clonal expansion of T cells during the immune response to a single type of antigen challenge, constructed phenomenologically in the macroscopic framework of a thermodynamic theory of continuum mechanics for reacting and proliferating fluid mixtures. The present contribution deals with approximate smooth solutions, called asymptotic waves, of the system of PDEs describing the introduced model, obtained using a suitable perturbative method. In particular, in the one-dimensional case, after deriving the expression of the velocity along the characteristic rays and the equation of the wave front, the transport equation for the first perturbation term of the asymptotic solution is obtained. Finally, it is shown that this transport equation can be reduced to an equation similar to Burgers equation.
Citation: D. Criaco, M. Dolfin, L. Restuccia. Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 59-73. doi: 10.3934/mbe.2013.10.59
References:
[1]

M. Dolfin and D. Criaco, A phenomenological approach to the dynamics of activation and clonal expansion of T cells,, Mathematical and Computer Modelling, 53 (2011), 314.   Google Scholar

[2]

G. Boillat, "La Propagation des Ondes,", $1^{st}$ edition, (1965).   Google Scholar

[3]

G. Boillat, Ondes asymptotiques nonlineaires,, Annali di Matematica Pura ed Applicata, IV, CXI (1976), 31.   Google Scholar

[4]

D. Fusco, Onde non lineari dispersive e dissipative,, Bollettino U.M.I, 16-A (1976), 450.   Google Scholar

[5]

A. Jeffrey and T. Taniuti, "Nonlinear Wave Propagation,", $1^{st}$ edition, (1964).   Google Scholar

[6]

A. Jeffrey, The propagation of weak discontinuities in quasilinear symmetric hyperbolic system,, Z. A. M. P. 14 (1963), 14 (1963), 31.   Google Scholar

[7]

A. Jeffrey and T. Kakutani, Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation,, SIAM Review, 14 (1972), 582.   Google Scholar

[8]

A. Jeffrey, The development of jump discontinuities in nonlinear hyperbolic systems of equations in two independent variables,, Arch. Rational Mech. Anal., 14 (1963), 27.   Google Scholar

[9]

P. D. Lax, Nonlinear hyperbolic equations,, Comm. Pure Appl. Math., 6 (1983), 231.   Google Scholar

[10]

A. Georgescu, "Asymptotic Treatment of Differential Equations,", $1^{st}$ edition, (1995).   Google Scholar

[11]

A. Donato and A. M. Greco, "Metodi Qualitativi per Onde Non Lineari - Quaderni del C. N. R., Gruppo Nazionale di Fisica Matematica, 11th Scuola Estiva di Fisica Matematica, Ravello, (1986), 8-20 September,", $1^{st}$ edition, (1987).   Google Scholar

[12]

Y. Choquet-Bruhat, Ondes asymptotiques et approchees pour systemes d'equations aux derivees partielles nonlineaires,, J. Math. Pures et Appl., 48 (1968), 117.   Google Scholar

[13]

P. D. Lax, "Contributions to the Theory of Partial Differential Equations,", $1^{st}$ edition, (1954).   Google Scholar

[14]

P. D. Lax, Hyperbolic systems of conservation law (II),, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[15]

T. Taniuti and C. C. Wei, Reductive pertubation method in nonlinear wave propagation,, J. Phys. Soc. Japan, 24 (1968), 941.   Google Scholar

[16]

V. Ciancio and L. Restuccia, Nonlinear dissipative waves in viscoanelastic media,, Physica A, 132 (1985), 606.   Google Scholar

[17]

V. Ciancio and L. Restuccia, Asymptotic waves in anelastic media without memory (Maxwell media),, Physica A, 131 (1985), 251.  doi: 10.1016/0378-4371(85)90090-1.  Google Scholar

[18]

V. Ciancio and L. Restuccia, The generalized Burgers equation in viscoanelastic media with memory,, Physica A, 142 (1987), 309.   Google Scholar

[19]

A. Jeffrey, "Quasilinear Hyperbolic Systems and Waves,", $1^{st}$ edition, (1976).   Google Scholar

[20]

I. Muller, "Thermodynamics,", $1^{st}$ edition, (1985).   Google Scholar

[21]

I. Muller and T. Ruggeri, "Rational Extended Thermodynamics,", $1^{st}$ edition, (1998).   Google Scholar

[22]

R. M. Ford and D. A. Lauffenburger, Analysis of chemotactic bacterial distributions in population migraton assays using a mathematical model applicable to steep ar shallow attractant gradients,, Bullettin of Mathematical Biology, 53 (1991), 721.   Google Scholar

[23]

D. A. Lauffenburger and K. H. Keller, A Effects of leukocyte random motility and chemotaxis in tissue inflammatory response,, Theoretical Biology, 81 (): 475.   Google Scholar

[24]

A. Tosin, D. Ambrosi and L. Preziosi, Mechanics and chemotaxis in the morphogenesis of vascular networks,, Mathematical Biology, 68 (2006), 1819.  doi: 10.1007/s11538-006-9071-2.  Google Scholar

[25]

H. Byrne and L. Preziosi, Modelling solid tumour growth using the theory of mixtures,, Mathematical Medicine and Biology, 20 (2003), 341.  doi: 10.1093/imammb/20.4.341.  Google Scholar

[26]

G. Carini, "Lezioni di Istituzioni di Fisica Matematica,", edition, (1989).   Google Scholar

[27]

J. D. Murray, "Mathematical Biology, vol I,", $2^{nd}$ edition, (2002).   Google Scholar

[28]

J. D. Murray, "Mathematical Biology, vol II,", $2^{nd}$ edition, (2002).   Google Scholar

[29]

E. Hopf, The partial differential equation ut + uux = xx,, Comm. Appl. Math., 3 (1950), 201.   Google Scholar

show all references

References:
[1]

M. Dolfin and D. Criaco, A phenomenological approach to the dynamics of activation and clonal expansion of T cells,, Mathematical and Computer Modelling, 53 (2011), 314.   Google Scholar

[2]

G. Boillat, "La Propagation des Ondes,", $1^{st}$ edition, (1965).   Google Scholar

[3]

G. Boillat, Ondes asymptotiques nonlineaires,, Annali di Matematica Pura ed Applicata, IV, CXI (1976), 31.   Google Scholar

[4]

D. Fusco, Onde non lineari dispersive e dissipative,, Bollettino U.M.I, 16-A (1976), 450.   Google Scholar

[5]

A. Jeffrey and T. Taniuti, "Nonlinear Wave Propagation,", $1^{st}$ edition, (1964).   Google Scholar

[6]

A. Jeffrey, The propagation of weak discontinuities in quasilinear symmetric hyperbolic system,, Z. A. M. P. 14 (1963), 14 (1963), 31.   Google Scholar

[7]

A. Jeffrey and T. Kakutani, Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation,, SIAM Review, 14 (1972), 582.   Google Scholar

[8]

A. Jeffrey, The development of jump discontinuities in nonlinear hyperbolic systems of equations in two independent variables,, Arch. Rational Mech. Anal., 14 (1963), 27.   Google Scholar

[9]

P. D. Lax, Nonlinear hyperbolic equations,, Comm. Pure Appl. Math., 6 (1983), 231.   Google Scholar

[10]

A. Georgescu, "Asymptotic Treatment of Differential Equations,", $1^{st}$ edition, (1995).   Google Scholar

[11]

A. Donato and A. M. Greco, "Metodi Qualitativi per Onde Non Lineari - Quaderni del C. N. R., Gruppo Nazionale di Fisica Matematica, 11th Scuola Estiva di Fisica Matematica, Ravello, (1986), 8-20 September,", $1^{st}$ edition, (1987).   Google Scholar

[12]

Y. Choquet-Bruhat, Ondes asymptotiques et approchees pour systemes d'equations aux derivees partielles nonlineaires,, J. Math. Pures et Appl., 48 (1968), 117.   Google Scholar

[13]

P. D. Lax, "Contributions to the Theory of Partial Differential Equations,", $1^{st}$ edition, (1954).   Google Scholar

[14]

P. D. Lax, Hyperbolic systems of conservation law (II),, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[15]

T. Taniuti and C. C. Wei, Reductive pertubation method in nonlinear wave propagation,, J. Phys. Soc. Japan, 24 (1968), 941.   Google Scholar

[16]

V. Ciancio and L. Restuccia, Nonlinear dissipative waves in viscoanelastic media,, Physica A, 132 (1985), 606.   Google Scholar

[17]

V. Ciancio and L. Restuccia, Asymptotic waves in anelastic media without memory (Maxwell media),, Physica A, 131 (1985), 251.  doi: 10.1016/0378-4371(85)90090-1.  Google Scholar

[18]

V. Ciancio and L. Restuccia, The generalized Burgers equation in viscoanelastic media with memory,, Physica A, 142 (1987), 309.   Google Scholar

[19]

A. Jeffrey, "Quasilinear Hyperbolic Systems and Waves,", $1^{st}$ edition, (1976).   Google Scholar

[20]

I. Muller, "Thermodynamics,", $1^{st}$ edition, (1985).   Google Scholar

[21]

I. Muller and T. Ruggeri, "Rational Extended Thermodynamics,", $1^{st}$ edition, (1998).   Google Scholar

[22]

R. M. Ford and D. A. Lauffenburger, Analysis of chemotactic bacterial distributions in population migraton assays using a mathematical model applicable to steep ar shallow attractant gradients,, Bullettin of Mathematical Biology, 53 (1991), 721.   Google Scholar

[23]

D. A. Lauffenburger and K. H. Keller, A Effects of leukocyte random motility and chemotaxis in tissue inflammatory response,, Theoretical Biology, 81 (): 475.   Google Scholar

[24]

A. Tosin, D. Ambrosi and L. Preziosi, Mechanics and chemotaxis in the morphogenesis of vascular networks,, Mathematical Biology, 68 (2006), 1819.  doi: 10.1007/s11538-006-9071-2.  Google Scholar

[25]

H. Byrne and L. Preziosi, Modelling solid tumour growth using the theory of mixtures,, Mathematical Medicine and Biology, 20 (2003), 341.  doi: 10.1093/imammb/20.4.341.  Google Scholar

[26]

G. Carini, "Lezioni di Istituzioni di Fisica Matematica,", edition, (1989).   Google Scholar

[27]

J. D. Murray, "Mathematical Biology, vol I,", $2^{nd}$ edition, (2002).   Google Scholar

[28]

J. D. Murray, "Mathematical Biology, vol II,", $2^{nd}$ edition, (2002).   Google Scholar

[29]

E. Hopf, The partial differential equation ut + uux = xx,, Comm. Appl. Math., 3 (1950), 201.   Google Scholar

[1]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[2]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[3]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[5]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[6]

Andrea Malchiodi. Perturbative techniques for the construction of spike-layers. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3767-3787. doi: 10.3934/dcds.2020055

[7]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[8]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[9]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[10]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[11]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[12]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[13]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[14]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[15]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[16]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[17]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[18]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[19]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[20]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]