
Previous Article
Finite element approximation of a population spatial adaptation model
 MBE Home
 This Issue

Next Article
Can malaria parasite pathogenesis be prevented by treatment with tumor necrosis factoralpha?
Identifying requirements for the invasion of a tick species and tickborne pathogen through TICKSIM
1.  Department of Biological Sciences, Old Dominion University, 110 MGB, Norfolk, Virginia 23529, United States, United States 
References:
[1] 
B. E. Anderson, K. G. Sims, J. G. Olson, J. E. Childs and J. F. Piesman, Amblyomma americanum: A potential vector of human ehrlichiosis, American Journal of Tropical Medicine and Hygiene, 49 (1993), 239244. 
[2] 
Centers for Disease Control and Prevention, Summary of notifiable diseases  United States, 2006, MMWR, 55 (2008), 194. 
[3] 
J. E. Childs and C. D. Paddock, The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States, Annual Review of Entomology, 48 (2003), 307337. 
[4] 
F. S. Dahlgren, E. J. Mandel, J. W. Krebs, R. F. Massung and J. H. McQuiston, Increasing Incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 20002007, American Journal of Tropical Medicine and Hygiene, 85 (2011), 124131. 
[5] 
S. A. Ewing, J. E. Dawson, A. A. Kocan, R. W. Barker, C. K. Warner, R. J. Panciera, J. C. Fox, K. M. Kocan and E. F. Bouin, Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among whitetailed deer by Amblyomma americanum(Acari: Ixodidae), Journal of Medical Entomology, 32 (1995), 368374. 
[6] 
D. B. Fishbein, J. E. Dawson and L. E. Robinson, Human ehrlichiosis in the United States, 1985 to 1990, Annals of Internal Medicine, 120 (1994), 736743. 
[7] 
H. D. Gaff, Preliminary analysis of an agent based model for a tickborne disease, Mathematical Biosciences and Engineering, 8 (2011), 463473. doi: 10.3934/mbe.2011.8.463. 
[8] 
V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske and S. F. Railsback, The ODD protocol: A review and first update, Ecological Modelling, 221 (2010), 27602768. doi: 10.1016/j.ecolmodel.2010.08.019. 
[9] 
J. Goodman, D. Dennis and D. Sonenshine, Tick borne diseases of humans, American Society of Microbiology, (2005). doi: 10.1086/504876. 
[10] 
H. A. Merten and L. A. Durden, A statebystate survey of ticks recorded from humans in the United States, Journal of Vector Ecology, 25 (2000), 102113. 
[11] 
C. D. Paddock and J. E. Childs, Ehrlichia chaffeensis: A prototypical emerging pathogen, Clinical Microbiology Reviews, 16 (2003), 3764. 
[12] 
C. D. Paddock and M. J. Yabsley, Ecological havoc, the rise of whitetailed deer, and the emergence of Amblyomma americanumassociated zoonoses in the United States, Current Topics in Microbiology and Immunology, 315 (2007), 289324. 
[13] 
C. D. Patrick and J. A. Hair, Whitetailed deer utilization of different habitats and its influence on lone star tick population, Journal of Parasitology, 64 (1978), 11001106. doi: 10.2307/3279735. 
[14] 
E. Y. Stromdahl, M. P. Randolph, J. J. O'Brien, and A. G. Gutierrez, Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) infection in Amblyomma americanum (Acari: Ixodidae) at Aberdeen Proving Ground, Maryland, Journal of Medical Entomology, 37 (2000), 349356. 
show all references
References:
[1] 
B. E. Anderson, K. G. Sims, J. G. Olson, J. E. Childs and J. F. Piesman, Amblyomma americanum: A potential vector of human ehrlichiosis, American Journal of Tropical Medicine and Hygiene, 49 (1993), 239244. 
[2] 
Centers for Disease Control and Prevention, Summary of notifiable diseases  United States, 2006, MMWR, 55 (2008), 194. 
[3] 
J. E. Childs and C. D. Paddock, The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States, Annual Review of Entomology, 48 (2003), 307337. 
[4] 
F. S. Dahlgren, E. J. Mandel, J. W. Krebs, R. F. Massung and J. H. McQuiston, Increasing Incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 20002007, American Journal of Tropical Medicine and Hygiene, 85 (2011), 124131. 
[5] 
S. A. Ewing, J. E. Dawson, A. A. Kocan, R. W. Barker, C. K. Warner, R. J. Panciera, J. C. Fox, K. M. Kocan and E. F. Bouin, Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among whitetailed deer by Amblyomma americanum(Acari: Ixodidae), Journal of Medical Entomology, 32 (1995), 368374. 
[6] 
D. B. Fishbein, J. E. Dawson and L. E. Robinson, Human ehrlichiosis in the United States, 1985 to 1990, Annals of Internal Medicine, 120 (1994), 736743. 
[7] 
H. D. Gaff, Preliminary analysis of an agent based model for a tickborne disease, Mathematical Biosciences and Engineering, 8 (2011), 463473. doi: 10.3934/mbe.2011.8.463. 
[8] 
V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske and S. F. Railsback, The ODD protocol: A review and first update, Ecological Modelling, 221 (2010), 27602768. doi: 10.1016/j.ecolmodel.2010.08.019. 
[9] 
J. Goodman, D. Dennis and D. Sonenshine, Tick borne diseases of humans, American Society of Microbiology, (2005). doi: 10.1086/504876. 
[10] 
H. A. Merten and L. A. Durden, A statebystate survey of ticks recorded from humans in the United States, Journal of Vector Ecology, 25 (2000), 102113. 
[11] 
C. D. Paddock and J. E. Childs, Ehrlichia chaffeensis: A prototypical emerging pathogen, Clinical Microbiology Reviews, 16 (2003), 3764. 
[12] 
C. D. Paddock and M. J. Yabsley, Ecological havoc, the rise of whitetailed deer, and the emergence of Amblyomma americanumassociated zoonoses in the United States, Current Topics in Microbiology and Immunology, 315 (2007), 289324. 
[13] 
C. D. Patrick and J. A. Hair, Whitetailed deer utilization of different habitats and its influence on lone star tick population, Journal of Parasitology, 64 (1978), 11001106. doi: 10.2307/3279735. 
[14] 
E. Y. Stromdahl, M. P. Randolph, J. J. O'Brien, and A. G. Gutierrez, Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) infection in Amblyomma americanum (Acari: Ixodidae) at Aberdeen Proving Ground, Maryland, Journal of Medical Entomology, 37 (2000), 349356. 
[1] 
Holly Gaff. Preliminary analysis of an agentbased model for a tickborne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463473. doi: 10.3934/mbe.2011.8.463 
[2] 
Shangbing Ai. Global stability of equilibria in a tickborne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567572. doi: 10.3934/mbe.2007.4.567 
[3] 
Yijun Lou, Li Liu, Daozhou Gao. Modeling coinfection of Ixodes tickborne pathogens. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 13011316. doi: 10.3934/mbe.2017067 
[4] 
Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agentbased model for elastoplastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75101. doi: 10.3934/mbe.2013.10.75 
[5] 
Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633659. doi: 10.3934/mbe.2007.4.633 
[6] 
Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks and Heterogeneous Media, 2015, 10 (3) : 527542. doi: 10.3934/nhm.2015.10.527 
[7] 
Xia Wang, Yuming Chen. An agestructured vectorborne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 10991116. doi: 10.3934/mbe.2018049 
[8] 
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete and Continuous Dynamical Systems  B, 2013, 18 (7) : 19091927. doi: 10.3934/dcdsb.2013.18.1909 
[9] 
Zhongqiang Wu, Zongkui Xie. A multiobjective lion swarm optimization based on multiagent. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022001 
[10] 
Prateek Kunwar, Oleksandr Markovichenko, Monique Chyba, Yuriy Mileyko, Alice Koniges, Thomas Lee. A study of computational and conceptual complexities of compartment and agent based models. Networks and Heterogeneous Media, 2022, 17 (3) : 359384. doi: 10.3934/nhm.2022011 
[11] 
Mahin Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Discrete and Continuous Dynamical Systems  B, 2006, 6 (1) : 185202. doi: 10.3934/dcdsb.2006.6.185 
[12] 
Peter J. Witbooi, Grant E. Muller, Marshall B. Ongansie, Ibrahim H. I. Ahmed, Kazeem O. Okosun. A stochastic population model of cholera disease. Discrete and Continuous Dynamical Systems  S, 2022, 15 (2) : 441456. doi: 10.3934/dcdss.2021116 
[13] 
Surabhi Pandey, Ezio Venturino. A TB model: Is disease eradication possible in India?. Mathematical Biosciences & Engineering, 2018, 15 (1) : 233254. doi: 10.3934/mbe.2018010 
[14] 
Fred Brauer. A model for an SI disease in an age  structured population. Discrete and Continuous Dynamical Systems  B, 2002, 2 (2) : 257264. doi: 10.3934/dcdsb.2002.2.257 
[15] 
Ionel S. Ciuperca, Matthieu Dumont, Abdelkader Lakmeche, Pauline Mazzocco, Laurent PujoMenjouet, Human Rezaei, Léon M. Tine. Alzheimer's disease and prion: An in vitro mathematical model. Discrete and Continuous Dynamical Systems  B, 2019, 24 (10) : 52255260. doi: 10.3934/dcdsb.2019057 
[16] 
SeungYeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multiagent system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 20372060. doi: 10.3934/dcds.2020105 
[17] 
Stephen A. Gourley, Xiulan Lai, Junping Shi, Wendi Wang, Yanyu Xiao, Xingfu Zou. Role of whitetailed deer in geographic spread of the blacklegged tick Ixodes scapularis : Analysis of a spatially nonlocal model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 10331054. doi: 10.3934/mbe.2018046 
[18] 
Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradientbased multiagent coordination control systems. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 297318. doi: 10.3934/naco.2019020 
[19] 
Ovide Arino, Manuel Delgado, Mónica MolinaBecerra. Asymptotic behavior of diseasefree equilibriums of an agestructured predatorprey model with disease in the prey. Discrete and Continuous Dynamical Systems  B, 2004, 4 (3) : 501515. doi: 10.3934/dcdsb.2004.4.501 
[20] 
W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete and Continuous Dynamical Systems  B, 2019, 24 (11) : 62396259. doi: 10.3934/dcdsb.2019137 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]