-
Previous Article
Finite element approximation of a population spatial adaptation model
- MBE Home
- This Issue
-
Next Article
Can malaria parasite pathogenesis be prevented by treatment with tumor necrosis factor-alpha?
Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM
1. | Department of Biological Sciences, Old Dominion University, 110 MGB, Norfolk, Virginia 23529, United States, United States |
References:
[1] |
B. E. Anderson, K. G. Sims, J. G. Olson, J. E. Childs and J. F. Piesman, Amblyomma americanum: A potential vector of human ehrlichiosis, American Journal of Tropical Medicine and Hygiene, 49 (1993), 239-244. |
[2] |
Centers for Disease Control and Prevention, Summary of notifiable diseases - United States, 2006, MMWR, 55 (2008), 1-94. |
[3] |
J. E. Childs and C. D. Paddock, The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States, Annual Review of Entomology, 48 (2003), 307-337. |
[4] |
F. S. Dahlgren, E. J. Mandel, J. W. Krebs, R. F. Massung and J. H. McQuiston, Increasing Incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000-2007, American Journal of Tropical Medicine and Hygiene, 85 (2011), 124-131. |
[5] |
S. A. Ewing, J. E. Dawson, A. A. Kocan, R. W. Barker, C. K. Warner, R. J. Panciera, J. C. Fox, K. M. Kocan and E. F. Bouin, Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum(Acari: Ixodidae), Journal of Medical Entomology, 32 (1995), 368-374. |
[6] |
D. B. Fishbein, J. E. Dawson and L. E. Robinson, Human ehrlichiosis in the United States, 1985 to 1990, Annals of Internal Medicine, 120 (1994), 736-743. |
[7] |
H. D. Gaff, Preliminary analysis of an agent based model for a tick-borne disease, Mathematical Biosciences and Engineering, 8 (2011), 463-473.
doi: 10.3934/mbe.2011.8.463. |
[8] |
V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske and S. F. Railsback, The ODD protocol: A review and first update, Ecological Modelling, 221 (2010), 2760-2768.
doi: 10.1016/j.ecolmodel.2010.08.019. |
[9] |
J. Goodman, D. Dennis and D. Sonenshine, Tick borne diseases of humans, American Society of Microbiology, (2005).
doi: 10.1086/504876. |
[10] |
H. A. Merten and L. A. Durden, A state-by-state survey of ticks recorded from humans in the United States, Journal of Vector Ecology, 25 (2000), 102-113. |
[11] |
C. D. Paddock and J. E. Childs, Ehrlichia chaffeensis: A prototypical emerging pathogen, Clinical Microbiology Reviews, 16 (2003), 37-64. |
[12] |
C. D. Paddock and M. J. Yabsley, Ecological havoc, the rise of white-tailed deer, and the emergence of Amblyomma americanum-associated zoonoses in the United States, Current Topics in Microbiology and Immunology, 315 (2007), 289-324. |
[13] |
C. D. Patrick and J. A. Hair, White-tailed deer utilization of different habitats and its influence on lone star tick population, Journal of Parasitology, 64 (1978), 1100-1106.
doi: 10.2307/3279735. |
[14] |
E. Y. Stromdahl, M. P. Randolph, J. J. O'Brien, and A. G. Gutierrez, Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) infection in Amblyomma americanum (Acari: Ixodidae) at Aberdeen Proving Ground, Maryland, Journal of Medical Entomology, 37 (2000), 349-356. |
show all references
References:
[1] |
B. E. Anderson, K. G. Sims, J. G. Olson, J. E. Childs and J. F. Piesman, Amblyomma americanum: A potential vector of human ehrlichiosis, American Journal of Tropical Medicine and Hygiene, 49 (1993), 239-244. |
[2] |
Centers for Disease Control and Prevention, Summary of notifiable diseases - United States, 2006, MMWR, 55 (2008), 1-94. |
[3] |
J. E. Childs and C. D. Paddock, The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States, Annual Review of Entomology, 48 (2003), 307-337. |
[4] |
F. S. Dahlgren, E. J. Mandel, J. W. Krebs, R. F. Massung and J. H. McQuiston, Increasing Incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000-2007, American Journal of Tropical Medicine and Hygiene, 85 (2011), 124-131. |
[5] |
S. A. Ewing, J. E. Dawson, A. A. Kocan, R. W. Barker, C. K. Warner, R. J. Panciera, J. C. Fox, K. M. Kocan and E. F. Bouin, Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum(Acari: Ixodidae), Journal of Medical Entomology, 32 (1995), 368-374. |
[6] |
D. B. Fishbein, J. E. Dawson and L. E. Robinson, Human ehrlichiosis in the United States, 1985 to 1990, Annals of Internal Medicine, 120 (1994), 736-743. |
[7] |
H. D. Gaff, Preliminary analysis of an agent based model for a tick-borne disease, Mathematical Biosciences and Engineering, 8 (2011), 463-473.
doi: 10.3934/mbe.2011.8.463. |
[8] |
V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske and S. F. Railsback, The ODD protocol: A review and first update, Ecological Modelling, 221 (2010), 2760-2768.
doi: 10.1016/j.ecolmodel.2010.08.019. |
[9] |
J. Goodman, D. Dennis and D. Sonenshine, Tick borne diseases of humans, American Society of Microbiology, (2005).
doi: 10.1086/504876. |
[10] |
H. A. Merten and L. A. Durden, A state-by-state survey of ticks recorded from humans in the United States, Journal of Vector Ecology, 25 (2000), 102-113. |
[11] |
C. D. Paddock and J. E. Childs, Ehrlichia chaffeensis: A prototypical emerging pathogen, Clinical Microbiology Reviews, 16 (2003), 37-64. |
[12] |
C. D. Paddock and M. J. Yabsley, Ecological havoc, the rise of white-tailed deer, and the emergence of Amblyomma americanum-associated zoonoses in the United States, Current Topics in Microbiology and Immunology, 315 (2007), 289-324. |
[13] |
C. D. Patrick and J. A. Hair, White-tailed deer utilization of different habitats and its influence on lone star tick population, Journal of Parasitology, 64 (1978), 1100-1106.
doi: 10.2307/3279735. |
[14] |
E. Y. Stromdahl, M. P. Randolph, J. J. O'Brien, and A. G. Gutierrez, Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) infection in Amblyomma americanum (Acari: Ixodidae) at Aberdeen Proving Ground, Maryland, Journal of Medical Entomology, 37 (2000), 349-356. |
[1] |
Holly Gaff. Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463-473. doi: 10.3934/mbe.2011.8.463 |
[2] |
Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567 |
[3] |
Yijun Lou, Li Liu, Daozhou Gao. Modeling co-infection of Ixodes tick-borne pathogens. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1301-1316. doi: 10.3934/mbe.2017067 |
[4] |
Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75-101. doi: 10.3934/mbe.2013.10.75 |
[5] |
Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633-659. doi: 10.3934/mbe.2007.4.633 |
[6] |
Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks and Heterogeneous Media, 2015, 10 (3) : 527-542. doi: 10.3934/nhm.2015.10.527 |
[7] |
Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049 |
[8] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[9] |
Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022001 |
[10] |
Prateek Kunwar, Oleksandr Markovichenko, Monique Chyba, Yuriy Mileyko, Alice Koniges, Thomas Lee. A study of computational and conceptual complexities of compartment and agent based models. Networks and Heterogeneous Media, 2022, 17 (3) : 359-384. doi: 10.3934/nhm.2022011 |
[11] |
Mahin Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 185-202. doi: 10.3934/dcdsb.2006.6.185 |
[12] |
Peter J. Witbooi, Grant E. Muller, Marshall B. Ongansie, Ibrahim H. I. Ahmed, Kazeem O. Okosun. A stochastic population model of cholera disease. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 441-456. doi: 10.3934/dcdss.2021116 |
[13] |
Surabhi Pandey, Ezio Venturino. A TB model: Is disease eradication possible in India?. Mathematical Biosciences & Engineering, 2018, 15 (1) : 233-254. doi: 10.3934/mbe.2018010 |
[14] |
Fred Brauer. A model for an SI disease in an age - structured population. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257 |
[15] |
Ionel S. Ciuperca, Matthieu Dumont, Abdelkader Lakmeche, Pauline Mazzocco, Laurent Pujo-Menjouet, Human Rezaei, Léon M. Tine. Alzheimer's disease and prion: An in vitro mathematical model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5225-5260. doi: 10.3934/dcdsb.2019057 |
[16] |
Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105 |
[17] |
Stephen A. Gourley, Xiulan Lai, Junping Shi, Wendi Wang, Yanyu Xiao, Xingfu Zou. Role of white-tailed deer in geographic spread of the black-legged tick Ixodes scapularis : Analysis of a spatially nonlocal model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 1033-1054. doi: 10.3934/mbe.2018046 |
[18] |
Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020 |
[19] |
Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501 |
[20] |
W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]