2013, 10(3): 625-635. doi: 10.3934/mbe.2013.10.625

Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM

1. 

Department of Biological Sciences, Old Dominion University, 110 MGB, Norfolk, Virginia 23529, United States, United States

Received  June 2012 Revised  October 2012 Published  April 2013

Ticks and tick-borne diseases have been on the move throughout the United State over the past twenty years. We use an agent-based model, TICKSIM, to identify the key parameters that determine the success of invasion of the tick and if that is successful, the succees of the tick-borne pathogen. We find that if an area has competent hosts, an initial population of ten ticks is predicted to always establish a new population. The establishment of the tick-borne pathogen depends on three parameters: the initial prevalence in the ten founding ticks, the probability that a tick infects the longer-lived hosts and the probability that a tick infects the shorter-lived hosts. These results indicate that the transmission rates to hosts in the newly established area can be used to predict the potential risk of disease to humans.
Citation: Holly Gaff, Robyn Nadolny. Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM. Mathematical Biosciences & Engineering, 2013, 10 (3) : 625-635. doi: 10.3934/mbe.2013.10.625
References:
[1]

B. E. Anderson, K. G. Sims, J. G. Olson, J. E. Childs and J. F. Piesman, Amblyomma americanum: A potential vector of human ehrlichiosis,, American Journal of Tropical Medicine and Hygiene, 49 (1993), 239.   Google Scholar

[2]

Centers for Disease Control and Prevention, Summary of notifiable diseases - United States, 2006,, MMWR, 55 (2008), 1.   Google Scholar

[3]

J. E. Childs and C. D. Paddock, The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States,, Annual Review of Entomology, 48 (2003), 307.   Google Scholar

[4]

F. S. Dahlgren, E. J. Mandel, J. W. Krebs, R. F. Massung and J. H. McQuiston, Increasing Incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000-2007,, American Journal of Tropical Medicine and Hygiene, 85 (2011), 124.   Google Scholar

[5]

S. A. Ewing, J. E. Dawson, A. A. Kocan, R. W. Barker, C. K. Warner, R. J. Panciera, J. C. Fox, K. M. Kocan and E. F. Bouin, Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum(Acari: Ixodidae),, Journal of Medical Entomology, 32 (1995), 368.   Google Scholar

[6]

D. B. Fishbein, J. E. Dawson and L. E. Robinson, Human ehrlichiosis in the United States, 1985 to 1990,, Annals of Internal Medicine, 120 (1994), 736.   Google Scholar

[7]

H. D. Gaff, Preliminary analysis of an agent based model for a tick-borne disease,, Mathematical Biosciences and Engineering, 8 (2011), 463.  doi: 10.3934/mbe.2011.8.463.  Google Scholar

[8]

V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske and S. F. Railsback, The ODD protocol: A review and first update,, Ecological Modelling, 221 (2010), 2760.  doi: 10.1016/j.ecolmodel.2010.08.019.  Google Scholar

[9]

J. Goodman, D. Dennis and D. Sonenshine, Tick borne diseases of humans,, American Society of Microbiology, (2005).  doi: 10.1086/504876.  Google Scholar

[10]

H. A. Merten and L. A. Durden, A state-by-state survey of ticks recorded from humans in the United States,, Journal of Vector Ecology, 25 (2000), 102.   Google Scholar

[11]

C. D. Paddock and J. E. Childs, Ehrlichia chaffeensis: A prototypical emerging pathogen,, Clinical Microbiology Reviews, 16 (2003), 37.   Google Scholar

[12]

C. D. Paddock and M. J. Yabsley, Ecological havoc, the rise of white-tailed deer, and the emergence of Amblyomma americanum-associated zoonoses in the United States,, Current Topics in Microbiology and Immunology, 315 (2007), 289.   Google Scholar

[13]

C. D. Patrick and J. A. Hair, White-tailed deer utilization of different habitats and its influence on lone star tick population,, Journal of Parasitology, 64 (1978), 1100.  doi: 10.2307/3279735.  Google Scholar

[14]

E. Y. Stromdahl, M. P. Randolph, J. J. O'Brien, and A. G. Gutierrez, Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) infection in Amblyomma americanum (Acari: Ixodidae) at Aberdeen Proving Ground, Maryland,, Journal of Medical Entomology, 37 (2000), 349.   Google Scholar

show all references

References:
[1]

B. E. Anderson, K. G. Sims, J. G. Olson, J. E. Childs and J. F. Piesman, Amblyomma americanum: A potential vector of human ehrlichiosis,, American Journal of Tropical Medicine and Hygiene, 49 (1993), 239.   Google Scholar

[2]

Centers for Disease Control and Prevention, Summary of notifiable diseases - United States, 2006,, MMWR, 55 (2008), 1.   Google Scholar

[3]

J. E. Childs and C. D. Paddock, The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States,, Annual Review of Entomology, 48 (2003), 307.   Google Scholar

[4]

F. S. Dahlgren, E. J. Mandel, J. W. Krebs, R. F. Massung and J. H. McQuiston, Increasing Incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000-2007,, American Journal of Tropical Medicine and Hygiene, 85 (2011), 124.   Google Scholar

[5]

S. A. Ewing, J. E. Dawson, A. A. Kocan, R. W. Barker, C. K. Warner, R. J. Panciera, J. C. Fox, K. M. Kocan and E. F. Bouin, Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum(Acari: Ixodidae),, Journal of Medical Entomology, 32 (1995), 368.   Google Scholar

[6]

D. B. Fishbein, J. E. Dawson and L. E. Robinson, Human ehrlichiosis in the United States, 1985 to 1990,, Annals of Internal Medicine, 120 (1994), 736.   Google Scholar

[7]

H. D. Gaff, Preliminary analysis of an agent based model for a tick-borne disease,, Mathematical Biosciences and Engineering, 8 (2011), 463.  doi: 10.3934/mbe.2011.8.463.  Google Scholar

[8]

V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske and S. F. Railsback, The ODD protocol: A review and first update,, Ecological Modelling, 221 (2010), 2760.  doi: 10.1016/j.ecolmodel.2010.08.019.  Google Scholar

[9]

J. Goodman, D. Dennis and D. Sonenshine, Tick borne diseases of humans,, American Society of Microbiology, (2005).  doi: 10.1086/504876.  Google Scholar

[10]

H. A. Merten and L. A. Durden, A state-by-state survey of ticks recorded from humans in the United States,, Journal of Vector Ecology, 25 (2000), 102.   Google Scholar

[11]

C. D. Paddock and J. E. Childs, Ehrlichia chaffeensis: A prototypical emerging pathogen,, Clinical Microbiology Reviews, 16 (2003), 37.   Google Scholar

[12]

C. D. Paddock and M. J. Yabsley, Ecological havoc, the rise of white-tailed deer, and the emergence of Amblyomma americanum-associated zoonoses in the United States,, Current Topics in Microbiology and Immunology, 315 (2007), 289.   Google Scholar

[13]

C. D. Patrick and J. A. Hair, White-tailed deer utilization of different habitats and its influence on lone star tick population,, Journal of Parasitology, 64 (1978), 1100.  doi: 10.2307/3279735.  Google Scholar

[14]

E. Y. Stromdahl, M. P. Randolph, J. J. O'Brien, and A. G. Gutierrez, Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) infection in Amblyomma americanum (Acari: Ixodidae) at Aberdeen Proving Ground, Maryland,, Journal of Medical Entomology, 37 (2000), 349.   Google Scholar

[1]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[2]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[3]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[4]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[5]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. A comparative study of atomistic-based stress evaluation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020322

[6]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[7]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[8]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[9]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[10]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[11]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[12]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[13]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020, 2 (4) : 351-390. doi: 10.3934/fods.2020017

[14]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[15]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[16]

Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045

[17]

Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053

[18]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[19]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[20]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]