2013, 10(3): 625-635. doi: 10.3934/mbe.2013.10.625

Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM

1. 

Department of Biological Sciences, Old Dominion University, 110 MGB, Norfolk, Virginia 23529, United States, United States

Received  June 2012 Revised  October 2012 Published  April 2013

Ticks and tick-borne diseases have been on the move throughout the United State over the past twenty years. We use an agent-based model, TICKSIM, to identify the key parameters that determine the success of invasion of the tick and if that is successful, the succees of the tick-borne pathogen. We find that if an area has competent hosts, an initial population of ten ticks is predicted to always establish a new population. The establishment of the tick-borne pathogen depends on three parameters: the initial prevalence in the ten founding ticks, the probability that a tick infects the longer-lived hosts and the probability that a tick infects the shorter-lived hosts. These results indicate that the transmission rates to hosts in the newly established area can be used to predict the potential risk of disease to humans.
Citation: Holly Gaff, Robyn Nadolny. Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM. Mathematical Biosciences & Engineering, 2013, 10 (3) : 625-635. doi: 10.3934/mbe.2013.10.625
References:
[1]

B. E. Anderson, K. G. Sims, J. G. Olson, J. E. Childs and J. F. Piesman, Amblyomma americanum: A potential vector of human ehrlichiosis,, American Journal of Tropical Medicine and Hygiene, 49 (1993), 239. Google Scholar

[2]

Centers for Disease Control and Prevention, Summary of notifiable diseases - United States, 2006,, MMWR, 55 (2008), 1. Google Scholar

[3]

J. E. Childs and C. D. Paddock, The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States,, Annual Review of Entomology, 48 (2003), 307. Google Scholar

[4]

F. S. Dahlgren, E. J. Mandel, J. W. Krebs, R. F. Massung and J. H. McQuiston, Increasing Incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000-2007,, American Journal of Tropical Medicine and Hygiene, 85 (2011), 124. Google Scholar

[5]

S. A. Ewing, J. E. Dawson, A. A. Kocan, R. W. Barker, C. K. Warner, R. J. Panciera, J. C. Fox, K. M. Kocan and E. F. Bouin, Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum(Acari: Ixodidae),, Journal of Medical Entomology, 32 (1995), 368. Google Scholar

[6]

D. B. Fishbein, J. E. Dawson and L. E. Robinson, Human ehrlichiosis in the United States, 1985 to 1990,, Annals of Internal Medicine, 120 (1994), 736. Google Scholar

[7]

H. D. Gaff, Preliminary analysis of an agent based model for a tick-borne disease,, Mathematical Biosciences and Engineering, 8 (2011), 463. doi: 10.3934/mbe.2011.8.463. Google Scholar

[8]

V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske and S. F. Railsback, The ODD protocol: A review and first update,, Ecological Modelling, 221 (2010), 2760. doi: 10.1016/j.ecolmodel.2010.08.019. Google Scholar

[9]

J. Goodman, D. Dennis and D. Sonenshine, Tick borne diseases of humans,, American Society of Microbiology, (2005). doi: 10.1086/504876. Google Scholar

[10]

H. A. Merten and L. A. Durden, A state-by-state survey of ticks recorded from humans in the United States,, Journal of Vector Ecology, 25 (2000), 102. Google Scholar

[11]

C. D. Paddock and J. E. Childs, Ehrlichia chaffeensis: A prototypical emerging pathogen,, Clinical Microbiology Reviews, 16 (2003), 37. Google Scholar

[12]

C. D. Paddock and M. J. Yabsley, Ecological havoc, the rise of white-tailed deer, and the emergence of Amblyomma americanum-associated zoonoses in the United States,, Current Topics in Microbiology and Immunology, 315 (2007), 289. Google Scholar

[13]

C. D. Patrick and J. A. Hair, White-tailed deer utilization of different habitats and its influence on lone star tick population,, Journal of Parasitology, 64 (1978), 1100. doi: 10.2307/3279735. Google Scholar

[14]

E. Y. Stromdahl, M. P. Randolph, J. J. O'Brien, and A. G. Gutierrez, Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) infection in Amblyomma americanum (Acari: Ixodidae) at Aberdeen Proving Ground, Maryland,, Journal of Medical Entomology, 37 (2000), 349. Google Scholar

show all references

References:
[1]

B. E. Anderson, K. G. Sims, J. G. Olson, J. E. Childs and J. F. Piesman, Amblyomma americanum: A potential vector of human ehrlichiosis,, American Journal of Tropical Medicine and Hygiene, 49 (1993), 239. Google Scholar

[2]

Centers for Disease Control and Prevention, Summary of notifiable diseases - United States, 2006,, MMWR, 55 (2008), 1. Google Scholar

[3]

J. E. Childs and C. D. Paddock, The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States,, Annual Review of Entomology, 48 (2003), 307. Google Scholar

[4]

F. S. Dahlgren, E. J. Mandel, J. W. Krebs, R. F. Massung and J. H. McQuiston, Increasing Incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000-2007,, American Journal of Tropical Medicine and Hygiene, 85 (2011), 124. Google Scholar

[5]

S. A. Ewing, J. E. Dawson, A. A. Kocan, R. W. Barker, C. K. Warner, R. J. Panciera, J. C. Fox, K. M. Kocan and E. F. Bouin, Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum(Acari: Ixodidae),, Journal of Medical Entomology, 32 (1995), 368. Google Scholar

[6]

D. B. Fishbein, J. E. Dawson and L. E. Robinson, Human ehrlichiosis in the United States, 1985 to 1990,, Annals of Internal Medicine, 120 (1994), 736. Google Scholar

[7]

H. D. Gaff, Preliminary analysis of an agent based model for a tick-borne disease,, Mathematical Biosciences and Engineering, 8 (2011), 463. doi: 10.3934/mbe.2011.8.463. Google Scholar

[8]

V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske and S. F. Railsback, The ODD protocol: A review and first update,, Ecological Modelling, 221 (2010), 2760. doi: 10.1016/j.ecolmodel.2010.08.019. Google Scholar

[9]

J. Goodman, D. Dennis and D. Sonenshine, Tick borne diseases of humans,, American Society of Microbiology, (2005). doi: 10.1086/504876. Google Scholar

[10]

H. A. Merten and L. A. Durden, A state-by-state survey of ticks recorded from humans in the United States,, Journal of Vector Ecology, 25 (2000), 102. Google Scholar

[11]

C. D. Paddock and J. E. Childs, Ehrlichia chaffeensis: A prototypical emerging pathogen,, Clinical Microbiology Reviews, 16 (2003), 37. Google Scholar

[12]

C. D. Paddock and M. J. Yabsley, Ecological havoc, the rise of white-tailed deer, and the emergence of Amblyomma americanum-associated zoonoses in the United States,, Current Topics in Microbiology and Immunology, 315 (2007), 289. Google Scholar

[13]

C. D. Patrick and J. A. Hair, White-tailed deer utilization of different habitats and its influence on lone star tick population,, Journal of Parasitology, 64 (1978), 1100. doi: 10.2307/3279735. Google Scholar

[14]

E. Y. Stromdahl, M. P. Randolph, J. J. O'Brien, and A. G. Gutierrez, Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) infection in Amblyomma americanum (Acari: Ixodidae) at Aberdeen Proving Ground, Maryland,, Journal of Medical Entomology, 37 (2000), 349. Google Scholar

[1]

Holly Gaff. Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463-473. doi: 10.3934/mbe.2011.8.463

[2]

Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567

[3]

Yijun Lou, Li Liu, Daozhou Gao. Modeling co-infection of Ixodes tick-borne pathogens. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1301-1316. doi: 10.3934/mbe.2017067

[4]

Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75-101. doi: 10.3934/mbe.2013.10.75

[5]

Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633-659. doi: 10.3934/mbe.2007.4.633

[6]

Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks & Heterogeneous Media, 2015, 10 (3) : 527-542. doi: 10.3934/nhm.2015.10.527

[7]

Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049

[8]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[9]

Mahin Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 185-202. doi: 10.3934/dcdsb.2006.6.185

[10]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[11]

Surabhi Pandey, Ezio Venturino. A TB model: Is disease eradication possible in India?. Mathematical Biosciences & Engineering, 2018, 15 (1) : 233-254. doi: 10.3934/mbe.2018010

[12]

Fred Brauer. A model for an SI disease in an age - structured population. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257

[13]

Ionel S. Ciuperca, Matthieu Dumont, Abdelkader Lakmeche, Pauline Mazzocco, Laurent Pujo-Menjouet, Human Rezaei, Léon M. Tine. Alzheimer's disease and prion: An in vitro mathematical model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5225-5260. doi: 10.3934/dcdsb.2019057

[14]

Stephen A. Gourley, Xiulan Lai, Junping Shi, Wendi Wang, Yanyu Xiao, Xingfu Zou. Role of white-tailed deer in geographic spread of the black-legged tick Ixodes scapularis : Analysis of a spatially nonlocal model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 1033-1054. doi: 10.3934/mbe.2018046

[15]

Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501

[16]

Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler. On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 787-802. doi: 10.3934/mbe.2013.10.787

[17]

John R. Graef, Michael Y. Li, Liancheng Wang. A study on the effects of disease caused death in a simple epidemic model. Conference Publications, 1998, 1998 (Special) : 288-300. doi: 10.3934/proc.1998.1998.288

[18]

W.R. Derrick, P. van den Driessche. Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 299-309. doi: 10.3934/dcdsb.2003.3.299

[19]

Xiaoling Li, Guangping Hu, Zhaosheng Feng, Dongliang Li. A periodic and diffusive predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 445-461. doi: 10.3934/dcdss.2017021

[20]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]