2013, 10(3): 637-647. doi: 10.3934/mbe.2013.10.637

Finite element approximation of a population spatial adaptation model

1. 

Dpto. de Matemáticas, Universidad de Oviedo, c/ Calvo Sotelo, 33007-Oviedo, Spain, Spain

Received  May 2012 Revised  October 2012 Published  April 2013

In [18], Sighesada, Kawasaki and Teramoto presented a system of partial differential equations for modeling spatial segregation of interacting species. Apart from competitive Lotka-Volterra (reaction) and population pressure (cross-diffusion) terms, a convective term modeling the populations attraction to more favorable environmental regions was included. In this article, we study numerically a modification of their convective term to take account for the notion of spatial adaptation of populations. After describing the model, in which a time non-local drift term is considered, we propose a numerical discretization in terms of a mass-preserving time semi-implicit finite element method. Finally, we provied the results of some biologically inspired numerical experiments showing qualitative differences between the original model of [18] and the model proposed in this article.
Citation: Gonzalo Galiano, Julián Velasco. Finite element approximation of a population spatial adaptation model. Mathematical Biosciences & Engineering, 2013, 10 (3) : 637-647. doi: 10.3934/mbe.2013.10.637
References:
[1]

J. W. Barrett and J. F. Blowey, Finite element approximation of a nonlinear cross-diffusion population model,, Numer. Math., 98 (2004), 195.  doi: 10.1007/s00211-004-0540-y.  Google Scholar

[2]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion,, SIAM J. Math. Anal., 36 (2004), 301.  doi: 10.1137/S0036141003427798.  Google Scholar

[3]

L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion semiconductor model with electron-hole scattering,, Commun. Part. Diff. Eqs., 32 (2007), 127.  doi: 10.1080/03605300601088815.  Google Scholar

[4]

P. Deuring, An initial-boundary value problem for a certain density-dependent diffusion system,, Math. Z., 194 (1987), 375.  doi: 10.1007/BF01162244.  Google Scholar

[5]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77.  doi: 10.1002/mana.19981950106.  Google Scholar

[6]

G. Galiano, Modeling spatial adaptation of populations by a time non-local convection cross-diffusion evolution problem,, Appl. Math. Comput., 218 (2011), 4587.  doi: 10.1016/j.amc.2011.10.041.  Google Scholar

[7]

G. Galiano, On a cross-diffusion population model deduced from mutation and splitting of a single species,, Comput. Math. Appl., 64 (2012), 1927.  doi: 10.1016/j.camwa.2012.03.045.  Google Scholar

[8]

G. Galiano, M. L. Garzón and A. Jüngel, Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics,, RACSAM Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A. Mat., 95 (2001), 281.   Google Scholar

[9]

G. Galiano, M. L. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model,, Numer. Math., 93 (2003), 655.  doi: 10.1007/s002110200406.  Google Scholar

[10]

G. Galiano and A. Jüngel, Global existence of solutions for a strongly coupled population system,, Banach Center Publ., 63 (2004), 209.   Google Scholar

[11]

G. Galiano, A. Jüngel and J. Velasco, A parabolic cross-diffusion system for granular materials,, SIAM J. Math. Anal., 35 (2003), 561.  doi: 10.1137/S0036141002409386.  Google Scholar

[12]

G. Galiano and J. Velasco, Competing through altering the environment: A cross-diffusion population model coupled to transport Darcy flow equations,, Nonlinear Anal., 12 (2011), 2826.  doi: 10.1016/j.nonrwa.2011.04.009.  Google Scholar

[13]

G. Gambino, M. C. Lombardo and M. Sammartino, A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion,, Appl. Numer. Math., 59 (2009), 1059.  doi: 10.1016/j.apnum.2008.05.002.  Google Scholar

[14]

J. U. Kim, Smooth solutions to a quasi-linear system of diffusion equations for a certain population model,, Nonlinear Analysis TMA, 8 (1984), 1121.  doi: 10.1016/0362-546X(84)90115-9.  Google Scholar

[15]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Diff. Eqs., 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[16]

Y. Lou, W.-M. Ni and Y. Wu, The global existence of solutions for a cross-diffusion system,, Adv. Math., 25 (1996), 283.   Google Scholar

[17]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[18]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[19]

A. Yagi, Global solution to some quasilinear parabolic system in population dynamics,, Nonlinear Analysis TMA, 21 (1993), 603.  doi: 10.1016/0362-546X(93)90004-C.  Google Scholar

show all references

References:
[1]

J. W. Barrett and J. F. Blowey, Finite element approximation of a nonlinear cross-diffusion population model,, Numer. Math., 98 (2004), 195.  doi: 10.1007/s00211-004-0540-y.  Google Scholar

[2]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion,, SIAM J. Math. Anal., 36 (2004), 301.  doi: 10.1137/S0036141003427798.  Google Scholar

[3]

L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion semiconductor model with electron-hole scattering,, Commun. Part. Diff. Eqs., 32 (2007), 127.  doi: 10.1080/03605300601088815.  Google Scholar

[4]

P. Deuring, An initial-boundary value problem for a certain density-dependent diffusion system,, Math. Z., 194 (1987), 375.  doi: 10.1007/BF01162244.  Google Scholar

[5]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77.  doi: 10.1002/mana.19981950106.  Google Scholar

[6]

G. Galiano, Modeling spatial adaptation of populations by a time non-local convection cross-diffusion evolution problem,, Appl. Math. Comput., 218 (2011), 4587.  doi: 10.1016/j.amc.2011.10.041.  Google Scholar

[7]

G. Galiano, On a cross-diffusion population model deduced from mutation and splitting of a single species,, Comput. Math. Appl., 64 (2012), 1927.  doi: 10.1016/j.camwa.2012.03.045.  Google Scholar

[8]

G. Galiano, M. L. Garzón and A. Jüngel, Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics,, RACSAM Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A. Mat., 95 (2001), 281.   Google Scholar

[9]

G. Galiano, M. L. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model,, Numer. Math., 93 (2003), 655.  doi: 10.1007/s002110200406.  Google Scholar

[10]

G. Galiano and A. Jüngel, Global existence of solutions for a strongly coupled population system,, Banach Center Publ., 63 (2004), 209.   Google Scholar

[11]

G. Galiano, A. Jüngel and J. Velasco, A parabolic cross-diffusion system for granular materials,, SIAM J. Math. Anal., 35 (2003), 561.  doi: 10.1137/S0036141002409386.  Google Scholar

[12]

G. Galiano and J. Velasco, Competing through altering the environment: A cross-diffusion population model coupled to transport Darcy flow equations,, Nonlinear Anal., 12 (2011), 2826.  doi: 10.1016/j.nonrwa.2011.04.009.  Google Scholar

[13]

G. Gambino, M. C. Lombardo and M. Sammartino, A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion,, Appl. Numer. Math., 59 (2009), 1059.  doi: 10.1016/j.apnum.2008.05.002.  Google Scholar

[14]

J. U. Kim, Smooth solutions to a quasi-linear system of diffusion equations for a certain population model,, Nonlinear Analysis TMA, 8 (1984), 1121.  doi: 10.1016/0362-546X(84)90115-9.  Google Scholar

[15]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Diff. Eqs., 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[16]

Y. Lou, W.-M. Ni and Y. Wu, The global existence of solutions for a cross-diffusion system,, Adv. Math., 25 (1996), 283.   Google Scholar

[17]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[18]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[19]

A. Yagi, Global solution to some quasilinear parabolic system in population dynamics,, Nonlinear Analysis TMA, 21 (1993), 603.  doi: 10.1016/0362-546X(93)90004-C.  Google Scholar

[1]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[2]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[6]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[9]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[10]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[11]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[12]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[13]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[14]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[17]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[18]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]