2013, 10(3): 637-647. doi: 10.3934/mbe.2013.10.637

Finite element approximation of a population spatial adaptation model

1. 

Dpto. de Matemáticas, Universidad de Oviedo, c/ Calvo Sotelo, 33007-Oviedo, Spain, Spain

Received  May 2012 Revised  October 2012 Published  April 2013

In [18], Sighesada, Kawasaki and Teramoto presented a system of partial differential equations for modeling spatial segregation of interacting species. Apart from competitive Lotka-Volterra (reaction) and population pressure (cross-diffusion) terms, a convective term modeling the populations attraction to more favorable environmental regions was included. In this article, we study numerically a modification of their convective term to take account for the notion of spatial adaptation of populations. After describing the model, in which a time non-local drift term is considered, we propose a numerical discretization in terms of a mass-preserving time semi-implicit finite element method. Finally, we provied the results of some biologically inspired numerical experiments showing qualitative differences between the original model of [18] and the model proposed in this article.
Citation: Gonzalo Galiano, Julián Velasco. Finite element approximation of a population spatial adaptation model. Mathematical Biosciences & Engineering, 2013, 10 (3) : 637-647. doi: 10.3934/mbe.2013.10.637
References:
[1]

J. W. Barrett and J. F. Blowey, Finite element approximation of a nonlinear cross-diffusion population model,, Numer. Math., 98 (2004), 195.  doi: 10.1007/s00211-004-0540-y.  Google Scholar

[2]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion,, SIAM J. Math. Anal., 36 (2004), 301.  doi: 10.1137/S0036141003427798.  Google Scholar

[3]

L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion semiconductor model with electron-hole scattering,, Commun. Part. Diff. Eqs., 32 (2007), 127.  doi: 10.1080/03605300601088815.  Google Scholar

[4]

P. Deuring, An initial-boundary value problem for a certain density-dependent diffusion system,, Math. Z., 194 (1987), 375.  doi: 10.1007/BF01162244.  Google Scholar

[5]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77.  doi: 10.1002/mana.19981950106.  Google Scholar

[6]

G. Galiano, Modeling spatial adaptation of populations by a time non-local convection cross-diffusion evolution problem,, Appl. Math. Comput., 218 (2011), 4587.  doi: 10.1016/j.amc.2011.10.041.  Google Scholar

[7]

G. Galiano, On a cross-diffusion population model deduced from mutation and splitting of a single species,, Comput. Math. Appl., 64 (2012), 1927.  doi: 10.1016/j.camwa.2012.03.045.  Google Scholar

[8]

G. Galiano, M. L. Garzón and A. Jüngel, Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics,, RACSAM Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A. Mat., 95 (2001), 281.   Google Scholar

[9]

G. Galiano, M. L. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model,, Numer. Math., 93 (2003), 655.  doi: 10.1007/s002110200406.  Google Scholar

[10]

G. Galiano and A. Jüngel, Global existence of solutions for a strongly coupled population system,, Banach Center Publ., 63 (2004), 209.   Google Scholar

[11]

G. Galiano, A. Jüngel and J. Velasco, A parabolic cross-diffusion system for granular materials,, SIAM J. Math. Anal., 35 (2003), 561.  doi: 10.1137/S0036141002409386.  Google Scholar

[12]

G. Galiano and J. Velasco, Competing through altering the environment: A cross-diffusion population model coupled to transport Darcy flow equations,, Nonlinear Anal., 12 (2011), 2826.  doi: 10.1016/j.nonrwa.2011.04.009.  Google Scholar

[13]

G. Gambino, M. C. Lombardo and M. Sammartino, A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion,, Appl. Numer. Math., 59 (2009), 1059.  doi: 10.1016/j.apnum.2008.05.002.  Google Scholar

[14]

J. U. Kim, Smooth solutions to a quasi-linear system of diffusion equations for a certain population model,, Nonlinear Analysis TMA, 8 (1984), 1121.  doi: 10.1016/0362-546X(84)90115-9.  Google Scholar

[15]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Diff. Eqs., 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[16]

Y. Lou, W.-M. Ni and Y. Wu, The global existence of solutions for a cross-diffusion system,, Adv. Math., 25 (1996), 283.   Google Scholar

[17]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[18]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[19]

A. Yagi, Global solution to some quasilinear parabolic system in population dynamics,, Nonlinear Analysis TMA, 21 (1993), 603.  doi: 10.1016/0362-546X(93)90004-C.  Google Scholar

show all references

References:
[1]

J. W. Barrett and J. F. Blowey, Finite element approximation of a nonlinear cross-diffusion population model,, Numer. Math., 98 (2004), 195.  doi: 10.1007/s00211-004-0540-y.  Google Scholar

[2]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion,, SIAM J. Math. Anal., 36 (2004), 301.  doi: 10.1137/S0036141003427798.  Google Scholar

[3]

L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion semiconductor model with electron-hole scattering,, Commun. Part. Diff. Eqs., 32 (2007), 127.  doi: 10.1080/03605300601088815.  Google Scholar

[4]

P. Deuring, An initial-boundary value problem for a certain density-dependent diffusion system,, Math. Z., 194 (1987), 375.  doi: 10.1007/BF01162244.  Google Scholar

[5]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77.  doi: 10.1002/mana.19981950106.  Google Scholar

[6]

G. Galiano, Modeling spatial adaptation of populations by a time non-local convection cross-diffusion evolution problem,, Appl. Math. Comput., 218 (2011), 4587.  doi: 10.1016/j.amc.2011.10.041.  Google Scholar

[7]

G. Galiano, On a cross-diffusion population model deduced from mutation and splitting of a single species,, Comput. Math. Appl., 64 (2012), 1927.  doi: 10.1016/j.camwa.2012.03.045.  Google Scholar

[8]

G. Galiano, M. L. Garzón and A. Jüngel, Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics,, RACSAM Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A. Mat., 95 (2001), 281.   Google Scholar

[9]

G. Galiano, M. L. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model,, Numer. Math., 93 (2003), 655.  doi: 10.1007/s002110200406.  Google Scholar

[10]

G. Galiano and A. Jüngel, Global existence of solutions for a strongly coupled population system,, Banach Center Publ., 63 (2004), 209.   Google Scholar

[11]

G. Galiano, A. Jüngel and J. Velasco, A parabolic cross-diffusion system for granular materials,, SIAM J. Math. Anal., 35 (2003), 561.  doi: 10.1137/S0036141002409386.  Google Scholar

[12]

G. Galiano and J. Velasco, Competing through altering the environment: A cross-diffusion population model coupled to transport Darcy flow equations,, Nonlinear Anal., 12 (2011), 2826.  doi: 10.1016/j.nonrwa.2011.04.009.  Google Scholar

[13]

G. Gambino, M. C. Lombardo and M. Sammartino, A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion,, Appl. Numer. Math., 59 (2009), 1059.  doi: 10.1016/j.apnum.2008.05.002.  Google Scholar

[14]

J. U. Kim, Smooth solutions to a quasi-linear system of diffusion equations for a certain population model,, Nonlinear Analysis TMA, 8 (1984), 1121.  doi: 10.1016/0362-546X(84)90115-9.  Google Scholar

[15]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Diff. Eqs., 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[16]

Y. Lou, W.-M. Ni and Y. Wu, The global existence of solutions for a cross-diffusion system,, Adv. Math., 25 (1996), 283.   Google Scholar

[17]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[18]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[19]

A. Yagi, Global solution to some quasilinear parabolic system in population dynamics,, Nonlinear Analysis TMA, 21 (1993), 603.  doi: 10.1016/0362-546X(93)90004-C.  Google Scholar

[1]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[2]

Kousuke Kuto, Yoshio Yamada. On limit systems for some population models with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2745-2769. doi: 10.3934/dcdsb.2012.17.2745

[3]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[4]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[5]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[6]

Xueying Wang, Drew Posny, Jin Wang. A reaction-convection-diffusion model for cholera spatial dynamics. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2785-2809. doi: 10.3934/dcdsb.2016073

[7]

Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152

[8]

Peng Feng, Zhengfang Zhou. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1145-1165. doi: 10.3934/cpaa.2007.6.1145

[9]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[10]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[11]

Robert Stephen Cantrell, Xinru Cao, King-Yeung Lam, Tian Xiang. A PDE model of intraguild predation with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3653-3661. doi: 10.3934/dcdsb.2017145

[12]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[13]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[14]

Michael Winkler, Dariusz Wrzosek. Preface: Analysis of cross-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : ⅰ-ⅰ. doi: 10.3934/dcdss.20202i

[15]

Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3575-3589. doi: 10.3934/dcds.2014.34.3575

[16]

Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147

[17]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[18]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[19]

Hongyong Zhao, Qianjin Zhang, Linhe Zhu. The spatial dynamics of a zebrafish model with cross-diffusions. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1035-1054. doi: 10.3934/mbe.2017054

[20]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]