Advanced Search
Article Contents
Article Contents

Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms

Abstract Related Papers Cited by
  • Two different generalized Newtonian mathematical models for blood flow, derived for the same experimental data, are compared, together with the Newtonian model, in three different anatomically realistic geometries of saccular cerebral aneurysms obtained from rotational CTA. The geometries differ in size of the aneurysm and the existence or not of side branches within the aneurysm. Results show that the differences between the two generalized Newtonian mathematical models are smaller than the differences between these and the Newtonian solution, in both steady and unsteady simulations.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Baek, M. V. Jayaraman, P. D. Richardson and G. E. Karniadakis, Flow instability and wall shear stress variation in intracranial aneurysms, Journal of The Royal Society Interface, 7 (2010), 967-988.doi: 10.1098/rsif.2009.0476.


    M. Bessis, "Living Blood Cells and Their Ultrastructure," Springer-Verlag, 1973.


    A. C. Burleson, C. M. Strother and V. T. Turitto, Computer modeling of intracranial saccular and lateral aneurysms for the study of their haemodynamics, Neurosurgery, 37 (1995), 774-784.


    C. G. Caro, T. J. Pedley, R. C. Schroter and W. A. Seed, "The Mechanics of the Circulation," Oxford University Press, 1978.


    J. R. Cebral, M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan and A. F. Frangi, Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm haemodynamics: Technique and sensitivity, IEEE Transactions on Medical Imaging, 24 (2005), 457-467.doi: 10.1109/TMI.2005.844159.


    J. R. Cebral, F. Mut, M. Raschi, E. Scrivano, P. Lylyk and C. M. Putman, Aneurysm rupture following treatment with flow diverting stents: Computational hemodynamics analysis of treatment, AJNR Am. J. Neuroradiol, 32 (2011), 27-33.doi: 10.3174/ajnr.A2398.


    J. R. Cebral, F. Mut, J. Weir and C. M. Putman, Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms, AJNR Am. J. Neuroradiol, 32 (2011), 145-152.doi: 10.3174/ajnr.A2419.


    M. D. Ford, S. W. Lee, S. P. Lownie, D. W. Holdsworth and D. A. Steinman, On the effect of parent-aneurysm angle on flow patterns in basilar tip aneurysms: Towards a surrogate geometric marker of intra-aneurismal haemodynamics, Journal of Biomechanics, 41 (2008), 241-248.doi: 10.1016/j.jbiomech.2007.09.032.


    A. Gambaruto, J. Janela, A. Moura and A. Sequeira, Sensitivity of haemodynamics in patient specific cerebral aneurysms to vascular geometry and blood rheology, Mathematical Biosciences and Engineering, 8 (2011), 409-423.doi: 10.3934/mbe.2011.8.409.


    A. Gambaruto, A. Moura and A. Sequeira, Topological flow structures and stir mixing for steady flow in a peripheral bypass graft with uncertainty, Int. J. Numer. Meth. Biomed. Engng., 26 (2010), 926-953.doi: 10.1002/cnm.1393.


    A. M. Gambaruto, J. Peiró, D. J. Doorly and A. G. Radaelli, Reconstruction of shape and its effect on flow in arterial conduits, Int. J. Numer. Meth. Fluids, 57 (2008), 495-517.doi: 10.1002/fld.1642.


    T. Hassan, E. V. Timofeev, T. Saito, H. Shimizu, M. Ezura, Y. Matsumoto, K. Takayama, T. Tominaga and A. Takahashi, A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture, Journal of Neurosurgery, 103 (2005), 662-680.doi: 10.3171/jns.2005.103.4.0662.


    S. G. Imbesi and C. W. Kerber, Analysis of slipstream flow in a wide-necked basilar artery aneurysm: Evaluation of potential treatment regimens, American Journal of Neuroradiology, 22 (2001), 721-724.


    J. Janela, A. Moura and A. Sequeira, Towards a geometrical multiscale approach to non-Newtonian blood flow simulations, in "Advances in Mathematical Fluid Mechanics", Springer, Berlin and Heidelberg, (2010), 295-310.doi: 10.1007/978-3-642-04068-9_18.


    M. Kim, D. B. Taulbee, M. Tremmel and H. Meng, Comparison of two stents in modifying cerebral aneurysm haemodynamics, Annals of Biomedical Engineering, 36 (2008), 726-741.doi: 10.1007/s10439-008-9449-4.


    D. Krex, H. K. Schackert and G. Schackert, Genesis of cerebral aneurysms - an update, Acta Neurochirurgica, 143 (2001), 429-449.


    S. W. Lee and D. A. Steinman, On the relative importance of rheology for image-based CFD models of the carotid bifurcation, J. Biomech. Eng., 129 (2007), 273-278.


    G. D. O. Lowe, "Clinical Blood Rheology," CRC Press, Boca Raton, FL, 1988.


    H. Meng, Z. Wang, Y. Hoi, L. Gao, E. Metaxa, D. D. Swartz and J. Kolega, Complex haemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation, Stroke, 38 (2007), 1924-1931.doi: 10.1161/STROKEAHA.106.481234.


    T. Passerini, L. M. Sangalli, S. Vantini, M. Piccinelli, S. Bacigaluppi, L. Antiga, E. Boccardi, P. Secchi and A. Veneziani, An integrated statistical investigation of internal carotid arteries of patients affected by cerebral aneurysms, Cardiovascular Engineering and Technology, 3 (2012), 22-40.doi: 10.1007/s13239-011-0079-x.


    B. Pincombe and J. Mazdumar, The effects of post-stenotic dilatations on the flow of blood analogue through stenosed coronary arteries, Math. Comput. Modelling, 25 (1997), 57-70.doi: 10.1016/S0895-7177(97)00039-3.


    S. Ramalho, A. Moura, A. M. Gambaruto and A. Sequeira, Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm, International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 697-713.doi: 10.1002/cnm.2461.


    S. Ramalho, A. Moura, A. M. Gambaruto and A. Sequeira, Influence of fluid mathematical model and outflow conditions in numerical simulations of cerebral aneurysms, in "Mathematical Methods and Models in Biomedicine" (Eds. U. Ledzewicz, H. Schättler, A. Friedman and E. Kashdan), Springer, (2013), 149-175.


    V. L. Rayz, L. Boussel, M. T. Lawton, G. Acevedo-Bolton, L. Ge, W. L. Young, R. T. Higashida and D. Saloner, Numerical modeling of the flow in intracranial aneurysms: Prediction of regions prone to thrombus formation, Ann. Biomed. Eng., 36 (2008), 1793-1804.doi: 10.1007/s10439-008-9561-5.


    A. Robertson, A. Sequeira and M. V. Kameneva, Hemorheology, in "Hemodynamical Flows", Modeling, Analysis and Simulation, Oberwolfach Seminars, 37 (2008), 63-120, Birkhäuser.doi: 10.1007/978-3-7643-7806-6_2.


    M. Shojima, M. Oshima, K. Takagi, et al., Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms, Stroke, 36 (2005), 193338.doi: 10.1161/01.STR.0000177877.88925.06.


    D. Steinman, J. Milner, C. Norley, S. Lownie and D. Holdsworth, Image-based computational simulation of flow dynamics in a giant intracranial aneurysm, American Journal of Neuroradiology, 24 (2003), 55966.


    P. Venugopal, D. Valentino, H. Schmitt, J. P. Villablanca, F. Viñuela and G. Duckwiler, Sensitivity of patient-specific numerical simulation of cerebral aneurysm haemodynamics to inflow boundary conditions, Journal of Neurosurgery, 106 (2007), 1051-1060.


    K. K. Yeleswarapu, M. V. Kameneva, K. R. Rajagopal and J. F. Antaki, The flow of blood in tubes: Theory and experiment, Mech. Res. Commun., 25 (1998), 257-262.doi: 10.1016/S0093-6413(98)00036-6.


    Z. Zeng, F. K. David, M. Durika, Y. Ding, D. A. Lewis, R. Kadirvel and A. M. Robertson, Sensitivity of CFD based hemodynamic results in rabbit aneurysm models to idealizations in surrounding vasculature, Journal of Biomechanical Engineering, 132 (2010), 091009.doi: 10.1115/1.4001311.

  • 加载中

Article Metrics

HTML views() PDF downloads(70) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint