-
Previous Article
On the sensitivity of feature ranked lists for large-scale biological data
- MBE Home
- This Issue
-
Next Article
Finite element approximation of a population spatial adaptation model
Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms
1. | Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat and CEMAT, P-1049-001, Lisbon, Portugal, Portugal, Portugal |
2. | Univ Tecn Lisboa, ISEG, Dept Matemat and CEMAPRE, P-1200-781 Lisbon, Portugal |
References:
[1] |
H. Baek, M. V. Jayaraman, P. D. Richardson and G. E. Karniadakis, Flow instability and wall shear stress variation in intracranial aneurysms,, Journal of The Royal Society Interface, 7 (2010), 967.
doi: 10.1098/rsif.2009.0476. |
[2] |
M. Bessis, "Living Blood Cells and Their Ultrastructure,", Springer-Verlag, (1973). Google Scholar |
[3] |
A. C. Burleson, C. M. Strother and V. T. Turitto, Computer modeling of intracranial saccular and lateral aneurysms for the study of their haemodynamics,, Neurosurgery, 37 (1995), 774. Google Scholar |
[4] |
C. G. Caro, T. J. Pedley, R. C. Schroter and W. A. Seed, "The Mechanics of the Circulation,", Oxford University Press, (1978). Google Scholar |
[5] |
J. R. Cebral, M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan and A. F. Frangi, Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm haemodynamics: Technique and sensitivity,, IEEE Transactions on Medical Imaging, 24 (2005), 457.
doi: 10.1109/TMI.2005.844159. |
[6] |
J. R. Cebral, F. Mut, M. Raschi, E. Scrivano, P. Lylyk and C. M. Putman, Aneurysm rupture following treatment with flow diverting stents: Computational hemodynamics analysis of treatment,, AJNR Am. J. Neuroradiol, 32 (2011), 27.
doi: 10.3174/ajnr.A2398. |
[7] |
J. R. Cebral, F. Mut, J. Weir and C. M. Putman, Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms,, AJNR Am. J. Neuroradiol, 32 (2011), 145.
doi: 10.3174/ajnr.A2419. |
[8] |
M. D. Ford, S. W. Lee, S. P. Lownie, D. W. Holdsworth and D. A. Steinman, On the effect of parent-aneurysm angle on flow patterns in basilar tip aneurysms: Towards a surrogate geometric marker of intra-aneurismal haemodynamics,, Journal of Biomechanics, 41 (2008), 241.
doi: 10.1016/j.jbiomech.2007.09.032. |
[9] |
A. Gambaruto, J. Janela, A. Moura and A. Sequeira, Sensitivity of haemodynamics in patient specific cerebral aneurysms to vascular geometry and blood rheology,, Mathematical Biosciences and Engineering, 8 (2011), 409.
doi: 10.3934/mbe.2011.8.409. |
[10] |
A. Gambaruto, A. Moura and A. Sequeira, Topological flow structures and stir mixing for steady flow in a peripheral bypass graft with uncertainty,, Int. J. Numer. Meth. Biomed. Engng., 26 (2010), 926.
doi: 10.1002/cnm.1393. |
[11] |
A. M. Gambaruto, J. Peiró, D. J. Doorly and A. G. Radaelli, Reconstruction of shape and its effect on flow in arterial conduits,, Int. J. Numer. Meth. Fluids, 57 (2008), 495.
doi: 10.1002/fld.1642. |
[12] |
T. Hassan, E. V. Timofeev, T. Saito, H. Shimizu, M. Ezura, Y. Matsumoto, K. Takayama, T. Tominaga and A. Takahashi, A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture,, Journal of Neurosurgery, 103 (2005), 662.
doi: 10.3171/jns.2005.103.4.0662. |
[13] |
S. G. Imbesi and C. W. Kerber, Analysis of slipstream flow in a wide-necked basilar artery aneurysm: Evaluation of potential treatment regimens,, American Journal of Neuroradiology, 22 (2001), 721. Google Scholar |
[14] |
J. Janela, A. Moura and A. Sequeira, Towards a geometrical multiscale approach to non-Newtonian blood flow simulations,, in, (2010), 295.
doi: 10.1007/978-3-642-04068-9_18. |
[15] |
M. Kim, D. B. Taulbee, M. Tremmel and H. Meng, Comparison of two stents in modifying cerebral aneurysm haemodynamics,, Annals of Biomedical Engineering, 36 (2008), 726.
doi: 10.1007/s10439-008-9449-4. |
[16] |
D. Krex, H. K. Schackert and G. Schackert, Genesis of cerebral aneurysms - an update,, Acta Neurochirurgica, 143 (2001), 429. Google Scholar |
[17] |
S. W. Lee and D. A. Steinman, On the relative importance of rheology for image-based CFD models of the carotid bifurcation,, J. Biomech. Eng., 129 (2007), 273. Google Scholar |
[18] |
G. D. O. Lowe, "Clinical Blood Rheology,", CRC Press, (1988). Google Scholar |
[19] |
H. Meng, Z. Wang, Y. Hoi, L. Gao, E. Metaxa, D. D. Swartz and J. Kolega, Complex haemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation,, Stroke, 38 (2007), 1924.
doi: 10.1161/STROKEAHA.106.481234. |
[20] |
T. Passerini, L. M. Sangalli, S. Vantini, M. Piccinelli, S. Bacigaluppi, L. Antiga, E. Boccardi, P. Secchi and A. Veneziani, An integrated statistical investigation of internal carotid arteries of patients affected by cerebral aneurysms,, Cardiovascular Engineering and Technology, 3 (2012), 22.
doi: 10.1007/s13239-011-0079-x. |
[21] |
B. Pincombe and J. Mazdumar, The effects of post-stenotic dilatations on the flow of blood analogue through stenosed coronary arteries,, Math. Comput. Modelling, 25 (1997), 57.
doi: 10.1016/S0895-7177(97)00039-3. |
[22] |
S. Ramalho, A. Moura, A. M. Gambaruto and A. Sequeira, Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm,, International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 697.
doi: 10.1002/cnm.2461. |
[23] |
S. Ramalho, A. Moura, A. M. Gambaruto and A. Sequeira, Influence of fluid mathematical model and outflow conditions in numerical simulations of cerebral aneurysms,, in, (2013), 149. Google Scholar |
[24] |
V. L. Rayz, L. Boussel, M. T. Lawton, G. Acevedo-Bolton, L. Ge, W. L. Young, R. T. Higashida and D. Saloner, Numerical modeling of the flow in intracranial aneurysms: Prediction of regions prone to thrombus formation,, Ann. Biomed. Eng., 36 (2008), 1793.
doi: 10.1007/s10439-008-9561-5. |
[25] |
A. Robertson, A. Sequeira and M. V. Kameneva, Hemorheology,, in, 37 (2008), 63.
doi: 10.1007/978-3-7643-7806-6_2. |
[26] |
M. Shojima, M. Oshima, K. Takagi, et al., Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms,, Stroke, 36 (2005).
doi: 10.1161/01.STR.0000177877.88925.06. |
[27] |
D. Steinman, J. Milner, C. Norley, S. Lownie and D. Holdsworth, Image-based computational simulation of flow dynamics in a giant intracranial aneurysm,, American Journal of Neuroradiology, 24 (2003). Google Scholar |
[28] |
P. Venugopal, D. Valentino, H. Schmitt, J. P. Villablanca, F. Viñuela and G. Duckwiler, Sensitivity of patient-specific numerical simulation of cerebral aneurysm haemodynamics to inflow boundary conditions,, Journal of Neurosurgery, 106 (2007), 1051. Google Scholar |
[29] |
K. K. Yeleswarapu, M. V. Kameneva, K. R. Rajagopal and J. F. Antaki, The flow of blood in tubes: Theory and experiment,, Mech. Res. Commun., 25 (1998), 257.
doi: 10.1016/S0093-6413(98)00036-6. |
[30] |
Z. Zeng, F. K. David, M. Durika, Y. Ding, D. A. Lewis, R. Kadirvel and A. M. Robertson, Sensitivity of CFD based hemodynamic results in rabbit aneurysm models to idealizations in surrounding vasculature,, Journal of Biomechanical Engineering, 132 (2010).
doi: 10.1115/1.4001311. |
show all references
References:
[1] |
H. Baek, M. V. Jayaraman, P. D. Richardson and G. E. Karniadakis, Flow instability and wall shear stress variation in intracranial aneurysms,, Journal of The Royal Society Interface, 7 (2010), 967.
doi: 10.1098/rsif.2009.0476. |
[2] |
M. Bessis, "Living Blood Cells and Their Ultrastructure,", Springer-Verlag, (1973). Google Scholar |
[3] |
A. C. Burleson, C. M. Strother and V. T. Turitto, Computer modeling of intracranial saccular and lateral aneurysms for the study of their haemodynamics,, Neurosurgery, 37 (1995), 774. Google Scholar |
[4] |
C. G. Caro, T. J. Pedley, R. C. Schroter and W. A. Seed, "The Mechanics of the Circulation,", Oxford University Press, (1978). Google Scholar |
[5] |
J. R. Cebral, M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan and A. F. Frangi, Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm haemodynamics: Technique and sensitivity,, IEEE Transactions on Medical Imaging, 24 (2005), 457.
doi: 10.1109/TMI.2005.844159. |
[6] |
J. R. Cebral, F. Mut, M. Raschi, E. Scrivano, P. Lylyk and C. M. Putman, Aneurysm rupture following treatment with flow diverting stents: Computational hemodynamics analysis of treatment,, AJNR Am. J. Neuroradiol, 32 (2011), 27.
doi: 10.3174/ajnr.A2398. |
[7] |
J. R. Cebral, F. Mut, J. Weir and C. M. Putman, Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms,, AJNR Am. J. Neuroradiol, 32 (2011), 145.
doi: 10.3174/ajnr.A2419. |
[8] |
M. D. Ford, S. W. Lee, S. P. Lownie, D. W. Holdsworth and D. A. Steinman, On the effect of parent-aneurysm angle on flow patterns in basilar tip aneurysms: Towards a surrogate geometric marker of intra-aneurismal haemodynamics,, Journal of Biomechanics, 41 (2008), 241.
doi: 10.1016/j.jbiomech.2007.09.032. |
[9] |
A. Gambaruto, J. Janela, A. Moura and A. Sequeira, Sensitivity of haemodynamics in patient specific cerebral aneurysms to vascular geometry and blood rheology,, Mathematical Biosciences and Engineering, 8 (2011), 409.
doi: 10.3934/mbe.2011.8.409. |
[10] |
A. Gambaruto, A. Moura and A. Sequeira, Topological flow structures and stir mixing for steady flow in a peripheral bypass graft with uncertainty,, Int. J. Numer. Meth. Biomed. Engng., 26 (2010), 926.
doi: 10.1002/cnm.1393. |
[11] |
A. M. Gambaruto, J. Peiró, D. J. Doorly and A. G. Radaelli, Reconstruction of shape and its effect on flow in arterial conduits,, Int. J. Numer. Meth. Fluids, 57 (2008), 495.
doi: 10.1002/fld.1642. |
[12] |
T. Hassan, E. V. Timofeev, T. Saito, H. Shimizu, M. Ezura, Y. Matsumoto, K. Takayama, T. Tominaga and A. Takahashi, A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture,, Journal of Neurosurgery, 103 (2005), 662.
doi: 10.3171/jns.2005.103.4.0662. |
[13] |
S. G. Imbesi and C. W. Kerber, Analysis of slipstream flow in a wide-necked basilar artery aneurysm: Evaluation of potential treatment regimens,, American Journal of Neuroradiology, 22 (2001), 721. Google Scholar |
[14] |
J. Janela, A. Moura and A. Sequeira, Towards a geometrical multiscale approach to non-Newtonian blood flow simulations,, in, (2010), 295.
doi: 10.1007/978-3-642-04068-9_18. |
[15] |
M. Kim, D. B. Taulbee, M. Tremmel and H. Meng, Comparison of two stents in modifying cerebral aneurysm haemodynamics,, Annals of Biomedical Engineering, 36 (2008), 726.
doi: 10.1007/s10439-008-9449-4. |
[16] |
D. Krex, H. K. Schackert and G. Schackert, Genesis of cerebral aneurysms - an update,, Acta Neurochirurgica, 143 (2001), 429. Google Scholar |
[17] |
S. W. Lee and D. A. Steinman, On the relative importance of rheology for image-based CFD models of the carotid bifurcation,, J. Biomech. Eng., 129 (2007), 273. Google Scholar |
[18] |
G. D. O. Lowe, "Clinical Blood Rheology,", CRC Press, (1988). Google Scholar |
[19] |
H. Meng, Z. Wang, Y. Hoi, L. Gao, E. Metaxa, D. D. Swartz and J. Kolega, Complex haemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation,, Stroke, 38 (2007), 1924.
doi: 10.1161/STROKEAHA.106.481234. |
[20] |
T. Passerini, L. M. Sangalli, S. Vantini, M. Piccinelli, S. Bacigaluppi, L. Antiga, E. Boccardi, P. Secchi and A. Veneziani, An integrated statistical investigation of internal carotid arteries of patients affected by cerebral aneurysms,, Cardiovascular Engineering and Technology, 3 (2012), 22.
doi: 10.1007/s13239-011-0079-x. |
[21] |
B. Pincombe and J. Mazdumar, The effects of post-stenotic dilatations on the flow of blood analogue through stenosed coronary arteries,, Math. Comput. Modelling, 25 (1997), 57.
doi: 10.1016/S0895-7177(97)00039-3. |
[22] |
S. Ramalho, A. Moura, A. M. Gambaruto and A. Sequeira, Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm,, International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 697.
doi: 10.1002/cnm.2461. |
[23] |
S. Ramalho, A. Moura, A. M. Gambaruto and A. Sequeira, Influence of fluid mathematical model and outflow conditions in numerical simulations of cerebral aneurysms,, in, (2013), 149. Google Scholar |
[24] |
V. L. Rayz, L. Boussel, M. T. Lawton, G. Acevedo-Bolton, L. Ge, W. L. Young, R. T. Higashida and D. Saloner, Numerical modeling of the flow in intracranial aneurysms: Prediction of regions prone to thrombus formation,, Ann. Biomed. Eng., 36 (2008), 1793.
doi: 10.1007/s10439-008-9561-5. |
[25] |
A. Robertson, A. Sequeira and M. V. Kameneva, Hemorheology,, in, 37 (2008), 63.
doi: 10.1007/978-3-7643-7806-6_2. |
[26] |
M. Shojima, M. Oshima, K. Takagi, et al., Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms,, Stroke, 36 (2005).
doi: 10.1161/01.STR.0000177877.88925.06. |
[27] |
D. Steinman, J. Milner, C. Norley, S. Lownie and D. Holdsworth, Image-based computational simulation of flow dynamics in a giant intracranial aneurysm,, American Journal of Neuroradiology, 24 (2003). Google Scholar |
[28] |
P. Venugopal, D. Valentino, H. Schmitt, J. P. Villablanca, F. Viñuela and G. Duckwiler, Sensitivity of patient-specific numerical simulation of cerebral aneurysm haemodynamics to inflow boundary conditions,, Journal of Neurosurgery, 106 (2007), 1051. Google Scholar |
[29] |
K. K. Yeleswarapu, M. V. Kameneva, K. R. Rajagopal and J. F. Antaki, The flow of blood in tubes: Theory and experiment,, Mech. Res. Commun., 25 (1998), 257.
doi: 10.1016/S0093-6413(98)00036-6. |
[30] |
Z. Zeng, F. K. David, M. Durika, Y. Ding, D. A. Lewis, R. Kadirvel and A. M. Robertson, Sensitivity of CFD based hemodynamic results in rabbit aneurysm models to idealizations in surrounding vasculature,, Journal of Biomechanical Engineering, 132 (2010).
doi: 10.1115/1.4001311. |
[1] |
Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021001 |
[2] |
Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010 |
[3] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[4] |
Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155 |
[5] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[6] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[7] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[8] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[9] |
Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455 |
[10] |
Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021002 |
[11] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[12] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[13] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
[14] |
Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213 |
[15] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[16] |
Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252 |
[17] |
Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284 |
[18] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[19] |
Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020034 |
[20] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]