2013, 10(3): 649-665. doi: 10.3934/mbe.2013.10.649

Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms

1. 

Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat and CEMAT, P-1049-001, Lisbon, Portugal, Portugal, Portugal

2. 

Univ Tecn Lisboa, ISEG, Dept Matemat and CEMAPRE, P-1200-781 Lisbon, Portugal

Received  September 2012 Revised  September 2012 Published  April 2013

Two different generalized Newtonian mathematical models for blood flow, derived for the same experimental data, are compared, together with the Newtonian model, in three different anatomically realistic geometries of saccular cerebral aneurysms obtained from rotational CTA. The geometries differ in size of the aneurysm and the existence or not of side branches within the aneurysm. Results show that the differences between the two generalized Newtonian mathematical models are smaller than the differences between these and the Newtonian solution, in both steady and unsteady simulations.
Citation: Alberto Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira. Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms. Mathematical Biosciences & Engineering, 2013, 10 (3) : 649-665. doi: 10.3934/mbe.2013.10.649
References:
[1]

H. Baek, M. V. Jayaraman, P. D. Richardson and G. E. Karniadakis, Flow instability and wall shear stress variation in intracranial aneurysms,, Journal of The Royal Society Interface, 7 (2010), 967.  doi: 10.1098/rsif.2009.0476.  Google Scholar

[2]

M. Bessis, "Living Blood Cells and Their Ultrastructure,", Springer-Verlag, (1973).   Google Scholar

[3]

A. C. Burleson, C. M. Strother and V. T. Turitto, Computer modeling of intracranial saccular and lateral aneurysms for the study of their haemodynamics,, Neurosurgery, 37 (1995), 774.   Google Scholar

[4]

C. G. Caro, T. J. Pedley, R. C. Schroter and W. A. Seed, "The Mechanics of the Circulation,", Oxford University Press, (1978).   Google Scholar

[5]

J. R. Cebral, M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan and A. F. Frangi, Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm haemodynamics: Technique and sensitivity,, IEEE Transactions on Medical Imaging, 24 (2005), 457.  doi: 10.1109/TMI.2005.844159.  Google Scholar

[6]

J. R. Cebral, F. Mut, M. Raschi, E. Scrivano, P. Lylyk and C. M. Putman, Aneurysm rupture following treatment with flow diverting stents: Computational hemodynamics analysis of treatment,, AJNR Am. J. Neuroradiol, 32 (2011), 27.  doi: 10.3174/ajnr.A2398.  Google Scholar

[7]

J. R. Cebral, F. Mut, J. Weir and C. M. Putman, Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms,, AJNR Am. J. Neuroradiol, 32 (2011), 145.  doi: 10.3174/ajnr.A2419.  Google Scholar

[8]

M. D. Ford, S. W. Lee, S. P. Lownie, D. W. Holdsworth and D. A. Steinman, On the effect of parent-aneurysm angle on flow patterns in basilar tip aneurysms: Towards a surrogate geometric marker of intra-aneurismal haemodynamics,, Journal of Biomechanics, 41 (2008), 241.  doi: 10.1016/j.jbiomech.2007.09.032.  Google Scholar

[9]

A. Gambaruto, J. Janela, A. Moura and A. Sequeira, Sensitivity of haemodynamics in patient specific cerebral aneurysms to vascular geometry and blood rheology,, Mathematical Biosciences and Engineering, 8 (2011), 409.  doi: 10.3934/mbe.2011.8.409.  Google Scholar

[10]

A. Gambaruto, A. Moura and A. Sequeira, Topological flow structures and stir mixing for steady flow in a peripheral bypass graft with uncertainty,, Int. J. Numer. Meth. Biomed. Engng., 26 (2010), 926.  doi: 10.1002/cnm.1393.  Google Scholar

[11]

A. M. Gambaruto, J. Peiró, D. J. Doorly and A. G. Radaelli, Reconstruction of shape and its effect on flow in arterial conduits,, Int. J. Numer. Meth. Fluids, 57 (2008), 495.  doi: 10.1002/fld.1642.  Google Scholar

[12]

T. Hassan, E. V. Timofeev, T. Saito, H. Shimizu, M. Ezura, Y. Matsumoto, K. Takayama, T. Tominaga and A. Takahashi, A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture,, Journal of Neurosurgery, 103 (2005), 662.  doi: 10.3171/jns.2005.103.4.0662.  Google Scholar

[13]

S. G. Imbesi and C. W. Kerber, Analysis of slipstream flow in a wide-necked basilar artery aneurysm: Evaluation of potential treatment regimens,, American Journal of Neuroradiology, 22 (2001), 721.   Google Scholar

[14]

J. Janela, A. Moura and A. Sequeira, Towards a geometrical multiscale approach to non-Newtonian blood flow simulations,, in, (2010), 295.  doi: 10.1007/978-3-642-04068-9_18.  Google Scholar

[15]

M. Kim, D. B. Taulbee, M. Tremmel and H. Meng, Comparison of two stents in modifying cerebral aneurysm haemodynamics,, Annals of Biomedical Engineering, 36 (2008), 726.  doi: 10.1007/s10439-008-9449-4.  Google Scholar

[16]

D. Krex, H. K. Schackert and G. Schackert, Genesis of cerebral aneurysms - an update,, Acta Neurochirurgica, 143 (2001), 429.   Google Scholar

[17]

S. W. Lee and D. A. Steinman, On the relative importance of rheology for image-based CFD models of the carotid bifurcation,, J. Biomech. Eng., 129 (2007), 273.   Google Scholar

[18]

G. D. O. Lowe, "Clinical Blood Rheology,", CRC Press, (1988).   Google Scholar

[19]

H. Meng, Z. Wang, Y. Hoi, L. Gao, E. Metaxa, D. D. Swartz and J. Kolega, Complex haemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation,, Stroke, 38 (2007), 1924.  doi: 10.1161/STROKEAHA.106.481234.  Google Scholar

[20]

T. Passerini, L. M. Sangalli, S. Vantini, M. Piccinelli, S. Bacigaluppi, L. Antiga, E. Boccardi, P. Secchi and A. Veneziani, An integrated statistical investigation of internal carotid arteries of patients affected by cerebral aneurysms,, Cardiovascular Engineering and Technology, 3 (2012), 22.  doi: 10.1007/s13239-011-0079-x.  Google Scholar

[21]

B. Pincombe and J. Mazdumar, The effects of post-stenotic dilatations on the flow of blood analogue through stenosed coronary arteries,, Math. Comput. Modelling, 25 (1997), 57.  doi: 10.1016/S0895-7177(97)00039-3.  Google Scholar

[22]

S. Ramalho, A. Moura, A. M. Gambaruto and A. Sequeira, Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm,, International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 697.  doi: 10.1002/cnm.2461.  Google Scholar

[23]

S. Ramalho, A. Moura, A. M. Gambaruto and A. Sequeira, Influence of fluid mathematical model and outflow conditions in numerical simulations of cerebral aneurysms,, in, (2013), 149.   Google Scholar

[24]

V. L. Rayz, L. Boussel, M. T. Lawton, G. Acevedo-Bolton, L. Ge, W. L. Young, R. T. Higashida and D. Saloner, Numerical modeling of the flow in intracranial aneurysms: Prediction of regions prone to thrombus formation,, Ann. Biomed. Eng., 36 (2008), 1793.  doi: 10.1007/s10439-008-9561-5.  Google Scholar

[25]

A. Robertson, A. Sequeira and M. V. Kameneva, Hemorheology,, in, 37 (2008), 63.  doi: 10.1007/978-3-7643-7806-6_2.  Google Scholar

[26]

M. Shojima, M. Oshima, K. Takagi, et al., Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms,, Stroke, 36 (2005).  doi: 10.1161/01.STR.0000177877.88925.06.  Google Scholar

[27]

D. Steinman, J. Milner, C. Norley, S. Lownie and D. Holdsworth, Image-based computational simulation of flow dynamics in a giant intracranial aneurysm,, American Journal of Neuroradiology, 24 (2003).   Google Scholar

[28]

P. Venugopal, D. Valentino, H. Schmitt, J. P. Villablanca, F. Viñuela and G. Duckwiler, Sensitivity of patient-specific numerical simulation of cerebral aneurysm haemodynamics to inflow boundary conditions,, Journal of Neurosurgery, 106 (2007), 1051.   Google Scholar

[29]

K. K. Yeleswarapu, M. V. Kameneva, K. R. Rajagopal and J. F. Antaki, The flow of blood in tubes: Theory and experiment,, Mech. Res. Commun., 25 (1998), 257.  doi: 10.1016/S0093-6413(98)00036-6.  Google Scholar

[30]

Z. Zeng, F. K. David, M. Durika, Y. Ding, D. A. Lewis, R. Kadirvel and A. M. Robertson, Sensitivity of CFD based hemodynamic results in rabbit aneurysm models to idealizations in surrounding vasculature,, Journal of Biomechanical Engineering, 132 (2010).  doi: 10.1115/1.4001311.  Google Scholar

show all references

References:
[1]

H. Baek, M. V. Jayaraman, P. D. Richardson and G. E. Karniadakis, Flow instability and wall shear stress variation in intracranial aneurysms,, Journal of The Royal Society Interface, 7 (2010), 967.  doi: 10.1098/rsif.2009.0476.  Google Scholar

[2]

M. Bessis, "Living Blood Cells and Their Ultrastructure,", Springer-Verlag, (1973).   Google Scholar

[3]

A. C. Burleson, C. M. Strother and V. T. Turitto, Computer modeling of intracranial saccular and lateral aneurysms for the study of their haemodynamics,, Neurosurgery, 37 (1995), 774.   Google Scholar

[4]

C. G. Caro, T. J. Pedley, R. C. Schroter and W. A. Seed, "The Mechanics of the Circulation,", Oxford University Press, (1978).   Google Scholar

[5]

J. R. Cebral, M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan and A. F. Frangi, Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm haemodynamics: Technique and sensitivity,, IEEE Transactions on Medical Imaging, 24 (2005), 457.  doi: 10.1109/TMI.2005.844159.  Google Scholar

[6]

J. R. Cebral, F. Mut, M. Raschi, E. Scrivano, P. Lylyk and C. M. Putman, Aneurysm rupture following treatment with flow diverting stents: Computational hemodynamics analysis of treatment,, AJNR Am. J. Neuroradiol, 32 (2011), 27.  doi: 10.3174/ajnr.A2398.  Google Scholar

[7]

J. R. Cebral, F. Mut, J. Weir and C. M. Putman, Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms,, AJNR Am. J. Neuroradiol, 32 (2011), 145.  doi: 10.3174/ajnr.A2419.  Google Scholar

[8]

M. D. Ford, S. W. Lee, S. P. Lownie, D. W. Holdsworth and D. A. Steinman, On the effect of parent-aneurysm angle on flow patterns in basilar tip aneurysms: Towards a surrogate geometric marker of intra-aneurismal haemodynamics,, Journal of Biomechanics, 41 (2008), 241.  doi: 10.1016/j.jbiomech.2007.09.032.  Google Scholar

[9]

A. Gambaruto, J. Janela, A. Moura and A. Sequeira, Sensitivity of haemodynamics in patient specific cerebral aneurysms to vascular geometry and blood rheology,, Mathematical Biosciences and Engineering, 8 (2011), 409.  doi: 10.3934/mbe.2011.8.409.  Google Scholar

[10]

A. Gambaruto, A. Moura and A. Sequeira, Topological flow structures and stir mixing for steady flow in a peripheral bypass graft with uncertainty,, Int. J. Numer. Meth. Biomed. Engng., 26 (2010), 926.  doi: 10.1002/cnm.1393.  Google Scholar

[11]

A. M. Gambaruto, J. Peiró, D. J. Doorly and A. G. Radaelli, Reconstruction of shape and its effect on flow in arterial conduits,, Int. J. Numer. Meth. Fluids, 57 (2008), 495.  doi: 10.1002/fld.1642.  Google Scholar

[12]

T. Hassan, E. V. Timofeev, T. Saito, H. Shimizu, M. Ezura, Y. Matsumoto, K. Takayama, T. Tominaga and A. Takahashi, A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture,, Journal of Neurosurgery, 103 (2005), 662.  doi: 10.3171/jns.2005.103.4.0662.  Google Scholar

[13]

S. G. Imbesi and C. W. Kerber, Analysis of slipstream flow in a wide-necked basilar artery aneurysm: Evaluation of potential treatment regimens,, American Journal of Neuroradiology, 22 (2001), 721.   Google Scholar

[14]

J. Janela, A. Moura and A. Sequeira, Towards a geometrical multiscale approach to non-Newtonian blood flow simulations,, in, (2010), 295.  doi: 10.1007/978-3-642-04068-9_18.  Google Scholar

[15]

M. Kim, D. B. Taulbee, M. Tremmel and H. Meng, Comparison of two stents in modifying cerebral aneurysm haemodynamics,, Annals of Biomedical Engineering, 36 (2008), 726.  doi: 10.1007/s10439-008-9449-4.  Google Scholar

[16]

D. Krex, H. K. Schackert and G. Schackert, Genesis of cerebral aneurysms - an update,, Acta Neurochirurgica, 143 (2001), 429.   Google Scholar

[17]

S. W. Lee and D. A. Steinman, On the relative importance of rheology for image-based CFD models of the carotid bifurcation,, J. Biomech. Eng., 129 (2007), 273.   Google Scholar

[18]

G. D. O. Lowe, "Clinical Blood Rheology,", CRC Press, (1988).   Google Scholar

[19]

H. Meng, Z. Wang, Y. Hoi, L. Gao, E. Metaxa, D. D. Swartz and J. Kolega, Complex haemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation,, Stroke, 38 (2007), 1924.  doi: 10.1161/STROKEAHA.106.481234.  Google Scholar

[20]

T. Passerini, L. M. Sangalli, S. Vantini, M. Piccinelli, S. Bacigaluppi, L. Antiga, E. Boccardi, P. Secchi and A. Veneziani, An integrated statistical investigation of internal carotid arteries of patients affected by cerebral aneurysms,, Cardiovascular Engineering and Technology, 3 (2012), 22.  doi: 10.1007/s13239-011-0079-x.  Google Scholar

[21]

B. Pincombe and J. Mazdumar, The effects of post-stenotic dilatations on the flow of blood analogue through stenosed coronary arteries,, Math. Comput. Modelling, 25 (1997), 57.  doi: 10.1016/S0895-7177(97)00039-3.  Google Scholar

[22]

S. Ramalho, A. Moura, A. M. Gambaruto and A. Sequeira, Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm,, International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 697.  doi: 10.1002/cnm.2461.  Google Scholar

[23]

S. Ramalho, A. Moura, A. M. Gambaruto and A. Sequeira, Influence of fluid mathematical model and outflow conditions in numerical simulations of cerebral aneurysms,, in, (2013), 149.   Google Scholar

[24]

V. L. Rayz, L. Boussel, M. T. Lawton, G. Acevedo-Bolton, L. Ge, W. L. Young, R. T. Higashida and D. Saloner, Numerical modeling of the flow in intracranial aneurysms: Prediction of regions prone to thrombus formation,, Ann. Biomed. Eng., 36 (2008), 1793.  doi: 10.1007/s10439-008-9561-5.  Google Scholar

[25]

A. Robertson, A. Sequeira and M. V. Kameneva, Hemorheology,, in, 37 (2008), 63.  doi: 10.1007/978-3-7643-7806-6_2.  Google Scholar

[26]

M. Shojima, M. Oshima, K. Takagi, et al., Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms,, Stroke, 36 (2005).  doi: 10.1161/01.STR.0000177877.88925.06.  Google Scholar

[27]

D. Steinman, J. Milner, C. Norley, S. Lownie and D. Holdsworth, Image-based computational simulation of flow dynamics in a giant intracranial aneurysm,, American Journal of Neuroradiology, 24 (2003).   Google Scholar

[28]

P. Venugopal, D. Valentino, H. Schmitt, J. P. Villablanca, F. Viñuela and G. Duckwiler, Sensitivity of patient-specific numerical simulation of cerebral aneurysm haemodynamics to inflow boundary conditions,, Journal of Neurosurgery, 106 (2007), 1051.   Google Scholar

[29]

K. K. Yeleswarapu, M. V. Kameneva, K. R. Rajagopal and J. F. Antaki, The flow of blood in tubes: Theory and experiment,, Mech. Res. Commun., 25 (1998), 257.  doi: 10.1016/S0093-6413(98)00036-6.  Google Scholar

[30]

Z. Zeng, F. K. David, M. Durika, Y. Ding, D. A. Lewis, R. Kadirvel and A. M. Robertson, Sensitivity of CFD based hemodynamic results in rabbit aneurysm models to idealizations in surrounding vasculature,, Journal of Biomechanical Engineering, 132 (2010).  doi: 10.1115/1.4001311.  Google Scholar

[1]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[2]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[3]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[4]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155

[5]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[6]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[7]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[8]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[9]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[10]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[11]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[12]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[13]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[14]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

[15]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[16]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[17]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[18]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[19]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[20]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (7)

[Back to Top]