2013, 10(3): 705-728. doi: 10.3934/mbe.2013.10.705

Mathematical modeling of citrus groves infected by huanglongbing

1. 

Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, United States, United States, United States

Received  May 2012 Revised  July 2012 Published  April 2013

Huanglongbing (citrus greening) is a bacterial disease that is significantly impacting the citrus industry in Florida and poses a risk to the remaining citrus-producing regions of the United States. A mathematical model of a grove infected by citrus greening is developed. An equilibrium stability analysis is presented. The basic reproductive number and its relation to the persistence of the disease is discussed. A numerical study is performed to illustrate the theoretical findings.
Citation: Karly Jacobsen, Jillian Stupiansky, Sergei S. Pilyugin. Mathematical modeling of citrus groves infected by huanglongbing. Mathematical Biosciences & Engineering, 2013, 10 (3) : 705-728. doi: 10.3934/mbe.2013.10.705
References:
[1]

R. N. Allen, Epidemiological factors influencing the success of roguing for the control of bunchy top disease of bananas in New South Wales,, Australian Journal of Agricultural Research, 29 (1978), 535.  doi: 10.1071/AR9780535.  Google Scholar

[2]

USDA Animal and Plant Health Inspection Service, "APHIS News Release: USDA Announces Quarantine to Prevent the Spread of Citrus Disease,", , (2010).   Google Scholar

[3]

M. S. Chan and M. J. Jeger, An analytical model of plant virus disease dynamics with roguing and replanting,, Journal of Applied Ecology, 31 (1994), 413.  doi: 10.2307/2404439.  Google Scholar

[4]

S. Fishman, R. Marcus, H. Talpaz, M. Bar-Joseph, Y. Oren, R. Salomon and M. Zohar, Epidemiological and economic models for spread and control of citrus tristeza virus disease,, Phytoparasitica, 11 (1983), 39.  doi: 10.1007/BF02980710.  Google Scholar

[5]

A. Fonda, Uniformly persistent semidynamical systems,, Proceedings of the American Mathematical Society, 104 (1988), 111.  doi: 10.1090/S0002-9939-1988-0958053-2.  Google Scholar

[6]

H. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set,, Journal of Dynamics and Differential Equations, 6 (1994), 583.  doi: 10.1007/BF02218848.  Google Scholar

[7]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,", Kluwer Academic Publishers, (1992).   Google Scholar

[8]

T. Gottwald, Current epidemiological understanding of citrus Huanglongbing,, Annual Review of Phytopathology, 48 (2010), 119.  doi: 10.1146/annurev-phyto-073009-114418.  Google Scholar

[9]

S. E. Halbert, personal communication,, 2010., ().   Google Scholar

[10]

S. E. Halbert, personal communication,, 2012., ().   Google Scholar

[11]

S. E. Halbert and C. K. Manjunath, Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida,, The Florida Entomologist, 87 (2004), 330.   Google Scholar

[12]

A. Hodges and T. Spreen, Economic impacts of citrus greening (hlb) in florida, 2006/07-2010/11,, Food and Resource Economics Department, (2012).   Google Scholar

[13]

R. W. H. Pluke, J. A. Qureshi and P. A. Stansly, Citrus flushing patterns, Diaphorina citri (Hemiptera: Psyllidae) populations and parasitism by Tamarixia radiata (Hymenoptera: Eulophidae) in Puerto Rico,, The Florida Entomologist, 91 (2008), 36.   Google Scholar

[14]

H. L. Smith and P. Waltman, "The Theory of the Chemostat,", Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[15]

Texas Department of Agriculture, Texas department of agriculture and USDA confirm detection of plant disease that damages citrus trees,, , (2012).   Google Scholar

[16]

A. Van Bruggen, personal communication,, 2010., ().   Google Scholar

[17]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[18]

C. F. Xu, Y. H. Xia, K. B. Li and C. Ke, Further study of the transmission of citrus Huanglongbing by a psyllid, Diaphorina citri Kuwayama,, in, (1988), 243.   Google Scholar

show all references

References:
[1]

R. N. Allen, Epidemiological factors influencing the success of roguing for the control of bunchy top disease of bananas in New South Wales,, Australian Journal of Agricultural Research, 29 (1978), 535.  doi: 10.1071/AR9780535.  Google Scholar

[2]

USDA Animal and Plant Health Inspection Service, "APHIS News Release: USDA Announces Quarantine to Prevent the Spread of Citrus Disease,", , (2010).   Google Scholar

[3]

M. S. Chan and M. J. Jeger, An analytical model of plant virus disease dynamics with roguing and replanting,, Journal of Applied Ecology, 31 (1994), 413.  doi: 10.2307/2404439.  Google Scholar

[4]

S. Fishman, R. Marcus, H. Talpaz, M. Bar-Joseph, Y. Oren, R. Salomon and M. Zohar, Epidemiological and economic models for spread and control of citrus tristeza virus disease,, Phytoparasitica, 11 (1983), 39.  doi: 10.1007/BF02980710.  Google Scholar

[5]

A. Fonda, Uniformly persistent semidynamical systems,, Proceedings of the American Mathematical Society, 104 (1988), 111.  doi: 10.1090/S0002-9939-1988-0958053-2.  Google Scholar

[6]

H. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set,, Journal of Dynamics and Differential Equations, 6 (1994), 583.  doi: 10.1007/BF02218848.  Google Scholar

[7]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,", Kluwer Academic Publishers, (1992).   Google Scholar

[8]

T. Gottwald, Current epidemiological understanding of citrus Huanglongbing,, Annual Review of Phytopathology, 48 (2010), 119.  doi: 10.1146/annurev-phyto-073009-114418.  Google Scholar

[9]

S. E. Halbert, personal communication,, 2010., ().   Google Scholar

[10]

S. E. Halbert, personal communication,, 2012., ().   Google Scholar

[11]

S. E. Halbert and C. K. Manjunath, Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida,, The Florida Entomologist, 87 (2004), 330.   Google Scholar

[12]

A. Hodges and T. Spreen, Economic impacts of citrus greening (hlb) in florida, 2006/07-2010/11,, Food and Resource Economics Department, (2012).   Google Scholar

[13]

R. W. H. Pluke, J. A. Qureshi and P. A. Stansly, Citrus flushing patterns, Diaphorina citri (Hemiptera: Psyllidae) populations and parasitism by Tamarixia radiata (Hymenoptera: Eulophidae) in Puerto Rico,, The Florida Entomologist, 91 (2008), 36.   Google Scholar

[14]

H. L. Smith and P. Waltman, "The Theory of the Chemostat,", Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[15]

Texas Department of Agriculture, Texas department of agriculture and USDA confirm detection of plant disease that damages citrus trees,, , (2012).   Google Scholar

[16]

A. Van Bruggen, personal communication,, 2010., ().   Google Scholar

[17]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[18]

C. F. Xu, Y. H. Xia, K. B. Li and C. Ke, Further study of the transmission of citrus Huanglongbing by a psyllid, Diaphorina citri Kuwayama,, in, (1988), 243.   Google Scholar

[1]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[2]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[3]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[6]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[7]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[8]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[9]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[10]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[11]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[12]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[13]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[16]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[17]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[18]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[19]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[20]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (7)

[Back to Top]