2013, 10(3): 705-728. doi: 10.3934/mbe.2013.10.705

Mathematical modeling of citrus groves infected by huanglongbing

1. 

Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, United States, United States, United States

Received  May 2012 Revised  July 2012 Published  April 2013

Huanglongbing (citrus greening) is a bacterial disease that is significantly impacting the citrus industry in Florida and poses a risk to the remaining citrus-producing regions of the United States. A mathematical model of a grove infected by citrus greening is developed. An equilibrium stability analysis is presented. The basic reproductive number and its relation to the persistence of the disease is discussed. A numerical study is performed to illustrate the theoretical findings.
Citation: Karly Jacobsen, Jillian Stupiansky, Sergei S. Pilyugin. Mathematical modeling of citrus groves infected by huanglongbing. Mathematical Biosciences & Engineering, 2013, 10 (3) : 705-728. doi: 10.3934/mbe.2013.10.705
References:
[1]

R. N. Allen, Epidemiological factors influencing the success of roguing for the control of bunchy top disease of bananas in New South Wales,, Australian Journal of Agricultural Research, 29 (1978), 535.  doi: 10.1071/AR9780535.  Google Scholar

[2]

USDA Animal and Plant Health Inspection Service, "APHIS News Release: USDA Announces Quarantine to Prevent the Spread of Citrus Disease,", , (2010).   Google Scholar

[3]

M. S. Chan and M. J. Jeger, An analytical model of plant virus disease dynamics with roguing and replanting,, Journal of Applied Ecology, 31 (1994), 413.  doi: 10.2307/2404439.  Google Scholar

[4]

S. Fishman, R. Marcus, H. Talpaz, M. Bar-Joseph, Y. Oren, R. Salomon and M. Zohar, Epidemiological and economic models for spread and control of citrus tristeza virus disease,, Phytoparasitica, 11 (1983), 39.  doi: 10.1007/BF02980710.  Google Scholar

[5]

A. Fonda, Uniformly persistent semidynamical systems,, Proceedings of the American Mathematical Society, 104 (1988), 111.  doi: 10.1090/S0002-9939-1988-0958053-2.  Google Scholar

[6]

H. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set,, Journal of Dynamics and Differential Equations, 6 (1994), 583.  doi: 10.1007/BF02218848.  Google Scholar

[7]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,", Kluwer Academic Publishers, (1992).   Google Scholar

[8]

T. Gottwald, Current epidemiological understanding of citrus Huanglongbing,, Annual Review of Phytopathology, 48 (2010), 119.  doi: 10.1146/annurev-phyto-073009-114418.  Google Scholar

[9]

S. E. Halbert, personal communication,, 2010., ().   Google Scholar

[10]

S. E. Halbert, personal communication,, 2012., ().   Google Scholar

[11]

S. E. Halbert and C. K. Manjunath, Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida,, The Florida Entomologist, 87 (2004), 330.   Google Scholar

[12]

A. Hodges and T. Spreen, Economic impacts of citrus greening (hlb) in florida, 2006/07-2010/11,, Food and Resource Economics Department, (2012).   Google Scholar

[13]

R. W. H. Pluke, J. A. Qureshi and P. A. Stansly, Citrus flushing patterns, Diaphorina citri (Hemiptera: Psyllidae) populations and parasitism by Tamarixia radiata (Hymenoptera: Eulophidae) in Puerto Rico,, The Florida Entomologist, 91 (2008), 36.   Google Scholar

[14]

H. L. Smith and P. Waltman, "The Theory of the Chemostat,", Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[15]

Texas Department of Agriculture, Texas department of agriculture and USDA confirm detection of plant disease that damages citrus trees,, , (2012).   Google Scholar

[16]

A. Van Bruggen, personal communication,, 2010., ().   Google Scholar

[17]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[18]

C. F. Xu, Y. H. Xia, K. B. Li and C. Ke, Further study of the transmission of citrus Huanglongbing by a psyllid, Diaphorina citri Kuwayama,, in, (1988), 243.   Google Scholar

show all references

References:
[1]

R. N. Allen, Epidemiological factors influencing the success of roguing for the control of bunchy top disease of bananas in New South Wales,, Australian Journal of Agricultural Research, 29 (1978), 535.  doi: 10.1071/AR9780535.  Google Scholar

[2]

USDA Animal and Plant Health Inspection Service, "APHIS News Release: USDA Announces Quarantine to Prevent the Spread of Citrus Disease,", , (2010).   Google Scholar

[3]

M. S. Chan and M. J. Jeger, An analytical model of plant virus disease dynamics with roguing and replanting,, Journal of Applied Ecology, 31 (1994), 413.  doi: 10.2307/2404439.  Google Scholar

[4]

S. Fishman, R. Marcus, H. Talpaz, M. Bar-Joseph, Y. Oren, R. Salomon and M. Zohar, Epidemiological and economic models for spread and control of citrus tristeza virus disease,, Phytoparasitica, 11 (1983), 39.  doi: 10.1007/BF02980710.  Google Scholar

[5]

A. Fonda, Uniformly persistent semidynamical systems,, Proceedings of the American Mathematical Society, 104 (1988), 111.  doi: 10.1090/S0002-9939-1988-0958053-2.  Google Scholar

[6]

H. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set,, Journal of Dynamics and Differential Equations, 6 (1994), 583.  doi: 10.1007/BF02218848.  Google Scholar

[7]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,", Kluwer Academic Publishers, (1992).   Google Scholar

[8]

T. Gottwald, Current epidemiological understanding of citrus Huanglongbing,, Annual Review of Phytopathology, 48 (2010), 119.  doi: 10.1146/annurev-phyto-073009-114418.  Google Scholar

[9]

S. E. Halbert, personal communication,, 2010., ().   Google Scholar

[10]

S. E. Halbert, personal communication,, 2012., ().   Google Scholar

[11]

S. E. Halbert and C. K. Manjunath, Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida,, The Florida Entomologist, 87 (2004), 330.   Google Scholar

[12]

A. Hodges and T. Spreen, Economic impacts of citrus greening (hlb) in florida, 2006/07-2010/11,, Food and Resource Economics Department, (2012).   Google Scholar

[13]

R. W. H. Pluke, J. A. Qureshi and P. A. Stansly, Citrus flushing patterns, Diaphorina citri (Hemiptera: Psyllidae) populations and parasitism by Tamarixia radiata (Hymenoptera: Eulophidae) in Puerto Rico,, The Florida Entomologist, 91 (2008), 36.   Google Scholar

[14]

H. L. Smith and P. Waltman, "The Theory of the Chemostat,", Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[15]

Texas Department of Agriculture, Texas department of agriculture and USDA confirm detection of plant disease that damages citrus trees,, , (2012).   Google Scholar

[16]

A. Van Bruggen, personal communication,, 2010., ().   Google Scholar

[17]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[18]

C. F. Xu, Y. H. Xia, K. B. Li and C. Ke, Further study of the transmission of citrus Huanglongbing by a psyllid, Diaphorina citri Kuwayama,, in, (1988), 243.   Google Scholar

[1]

Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049

[2]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[3]

Xinli Hu, Yansheng Liu, Jianhong Wu. Culling structured hosts to eradicate vector-borne diseases. Mathematical Biosciences & Engineering, 2009, 6 (2) : 301-319. doi: 10.3934/mbe.2009.6.301

[4]

Kbenesh Blayneh, Yanzhao Cao, Hee-Dae Kwon. Optimal control of vector-borne diseases: Treatment and prevention. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 587-611. doi: 10.3934/dcdsb.2009.11.587

[5]

Derdei Mahamat Bichara. Effects of migration on vector-borne diseases with forward and backward stage progression. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6297-6323. doi: 10.3934/dcdsb.2019140

[6]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[7]

Holly Gaff. Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463-473. doi: 10.3934/mbe.2011.8.463

[8]

Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567

[9]

Fred Brauer. A model for an SI disease in an age - structured population. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257

[10]

Ionel S. Ciuperca, Matthieu Dumont, Abdelkader Lakmeche, Pauline Mazzocco, Laurent Pujo-Menjouet, Human Rezaei, Léon M. Tine. Alzheimer's disease and prion: An in vitro mathematical model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5225-5260. doi: 10.3934/dcdsb.2019057

[11]

Zengji Du, Zhaosheng Feng. Existence and asymptotic behaviors of traveling waves of a modified vector-disease model. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1899-1920. doi: 10.3934/cpaa.2018090

[12]

W.R. Derrick, P. van den Driessche. Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 299-309. doi: 10.3934/dcdsb.2003.3.299

[13]

Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156-165. doi: 10.3934/proc.2001.2001.156

[14]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[15]

Wendi Wang. Population dispersal and disease spread. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797

[16]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[17]

Zhenyuan Guo, Lihong Huang, Xingfu Zou. Impact of discontinuous treatments on disease dynamics in an SIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 97-110. doi: 10.3934/mbe.2012.9.97

[18]

Jing Li, Zhen Jin, Gui-Quan Sun, Li-Peng Song. Pattern dynamics of a delayed eco-epidemiological model with disease in the predator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1025-1042. doi: 10.3934/dcdss.2017054

[19]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[20]

Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

[Back to Top]