2013, 10(3): 729-742. doi: 10.3934/mbe.2013.10.729

Hybrid discrete-continuous model of invasive bladder cancer

1. 

School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Ramat Aviv, 69978, Israel

2. 

Department of Computer Science and Mathematics, Ariel University Center of Samaria, Ariel, 40700, Israel

Received  June 2012 Revised  November 2012 Published  April 2013

Bladder cancer is the seventh most common cancer worldwide. Epidemiological studies and experiments implicated chemical penetration into urothelium (epithelial tissue surrounding bladder) in the etiology of bladder cancer. In this work we model invasive bladder cancer. This type of cancer starts in the urothelium and progresses towards surrounding muscles and tissues, causing metastatic disease. Our mathematical model of invasive BC consists of two coupled sub-models: (i) living cycle of the urothelial cells (normal and mutated) simulated using discrete technique of Cellular Automata and (ii) mechanism of tumor invasion described by the system of reaction-diffusion equations. Numerical simulations presented here are in good qualitative agreement with the experimental results and reproduce in vitro observations described in medical literature.
Citation: Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Hybrid discrete-continuous model of invasive bladder cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 729-742. doi: 10.3934/mbe.2013.10.729
References:
[1]

A. E. Anderson, A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion, Mathematical Medicine and Biology, 22 (2005), 163-186. doi: 10.1093/imammb/dqi005.

[2]

F. Andreu, V. Caselles and J. Mazan, Diffusion equations with finite speed of propagation, in "Functional Analysis and Evolution Equations" (eds. H. Amann et al), Birkhauser Basel, (2008), 17-34. doi: 10.1007/978-3-7643-7794-6_2.

[3]

Atlas of Genetics and Cytogenetics in Oncology and Haematology, http://AtlasGeneticsOncology.org. Image available for use under CCA license.

[4]

A. H. Baker, D. R. Edwards and G. Murphy, Metalloproteinase inhibitors: Biological actions and therapeutic opportunities, J. of Cell Science, 115 (2002), 3719-3727. doi: 10.1242/jcs.00063.

[5]

C. E. Brinckerhoff and L. M.Matrisian, Matrix metalloproteinases: A tail of frog that became a prince, Nature Reviews, Molecular Cell Biology, 3 (2002) 207-214.

[6]

H. M Byrne, M. A. J. Chaplain, G. J. Pettet and D. L. S. McElwain, A mathematical model of trophoblast invasion, J. of Theor. Medicine, 1 (1999), 275-286. doi: 10.1080/10273669908833026.

[7]

C. Chang and Z. Werb, The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis, Trends in Cell Biology, 11 (2001), 37-43.

[8]

M. A. J. Chaplain and G. Lolas, Mathematical modeling of cancer invasion of tissue: Dynamic heterogeneity, Networks and Heterogeneous Media, 1 (2006), 399-439 doi: 10.3934/nhm.2006.1.399.

[9]

L. M. Coussens, B. Fingleton and L. M. Matrisian, Matrix metalloproteinase inhibitors and cancer: Trials and tribulations, Science, 295 (2002), 2387-2392. doi: 10.1126/science.1067100.

[10]

G. B. Ermentrout and L. Edelstein-Keshet, Cellular automata approaches to biological modelling, J. Theor. Biol., 160 (1993), 97-133. doi: 10.1006/jtbi.1993.1007.

[11]

R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Research, 56 (1996), 5745-5753.

[12]

B. George, R. H. Datar and R. J. Cote, Molecular biology of bladder cancer: cell cycle alterations, in "Textbook of Bladder Cancer" (eds. S. P. Lerner, et al), Taylor & Francis, (2006), 107-122.

[13]

G. Giannelli, J. Falk-Marzillier, O. Schiraldi, W. G. Stetler-Stevenson and V. Quaranta, Induction of cell migration by matrix metalloprotease-2 cleavage of lamitiin-5, Science, 277 (1997), 225-228.

[14]

F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model, Phys. Rev. Lett., 69 (1992), 2013-2016. doi: 10.1103/PhysRevLett.69.2013.

[15]

G. P. Hemstreet III and E. M, Messing, Early detection for bladder cancer, in "Textbook of Bladder Cancer" (eds. S. P. Lerner, et al), Taylor & Francis, (2006), 257-266.

[16]

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward and D. Forman, Global cancer statistics, CA: A Cancer J. for Clinicians, 61 (2011), 69-90. doi: 10.3322/caac.20107.

[17]

T. Kakizoe, Development and progression of urothelial carcinoma, Cancer Science, 97 (1982), 821-828. doi: 10.1111/j.1349-7006.2006.00264.x.

[18]

E. Kashdan and S. Bunimovich-Mendrazitsky, "Multi-Scale Model of Bladder Cancer Development," Discrete and Continuous Dynamical Systems, 2011, 803-812.

[19]

M. Kirsch-Voldersa, M. Aardemab and A. Elhajoujic, Concepts of threshold in mutagenesis and carcinogenesis, Mutation Res., 464 (2000), 3-11. doi: 10.1016/S1383-5718(99)00161-8.

[20]

C. J. Malemud, Matrix metalloproteinases (MMPs) in health and disease: an overview, Frontiers in Bioscience, 11 (2006), 1696-1701. doi: 10.2741/1915.

[21]

B. P. Marchant, J. Norbury and J. A. Sherratt, Travelling wave solutions to a haptotaxis-dominated model of malignant invasion, Nonlinearity, 14 (2001), 1653-1671. doi: 10.1088/0951-7715/14/6/313.

[22]

C. J. Marshall, L. M. Franks and A. W. Carbonell, Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas, J. Natl. Cancer Inst., 58 (1977), 1743-1751.

[23]

L. L. Munn, C. Kunert and J. A. Tyrrell, Modeling tumor blood vessel dynamics, in "Mathematical Methods and Models in Biomedicine" (eds. U. Ledzewicz, et al), Springer, (2012), 113-142. doi: 10.1007/978-1-4614-4178-6_5.

[24]

G. Murphy and J. Gavrilovic, The mathematical modelling of Proteolysis and cell migration: Creating a path?, Curr. Opin. Cell Biol., 11 (1999), 614-621.

[25]

K. Nabeshima, W. S. Lane and C. Biswas, Partial sequencing and characterisation of the tumour cell- derived collagenase stimulatory factor, Arch. Biochem. Biophys., 285 (1991), 90-96.

[26]

U. 0. Nseyo and D. L. Lamm, Immunotherapy of bladder cancer, Seminars in Surgical Oncology, 13 (1997), 342-349.

[27]

J. E. Nutt, G. C. Durkan, J. vK. Mellon and J. Lunce, Matrix metalloproteinases (MMPs) in bladder cancer: The induction of MMP9 by epidermal growth factor and its detection in urine, BJU International, 91 (2003), 99-104. doi: 10.1046/j.1464-410X.2003.04020.x.

[28]

A. J. Perumpanani, J. A. Sherratt, J. Norbury and H. M. Byrne, A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion, Physica D, 126 (1999), 145-159. doi: 10.1016/S0167-2789(98)00272-3.

[29]

V. Quaranta, K. A. Rejniak, P. Gerlee and A. R. A. Anderson, Invasion emerges from cancer cell adaptation to competitive microenvironments: Quantitative predictions from multiscale mathematical models, Seminars in Cancer Biology, 18 (2008), 338-348. doi: 10.1016/j.semcancer.2008.03.018.

[30]

I. Ramis-Conde, M. A. J. Chaplain and A. R. A. Anderson, Mathematical modelling of cancer cell invasion of tissue, Mathematical and Computer Modelling, 47 (2008), 533-545. doi: 10.1016/j.mcm.2007.02.034.

[31]

C. J. Sherr, Cancer cell cycles, Science, 274 (1996), 1672-1677. doi: 10.1126/science.274.5293.1672.

[32]

W. G. Stetler- Stevenson, S. Aznavoorian and L. A. Liotta, Tumor cell interactions with the extracellular matrix during invasion and metastasis, Ann. Rev. Cell Biol., 9 (1993), 541-573.

[33]

J. Testa, Loss of metastatic phenotype by a human epidermoid carcinoma cell line hep-3 is accompanied by increased expression of tissue inhibitor of matrix metalloproteinase-2, Cancer Res., 52 (1992), 5597-5603.

[34]

Transitional epithelium of the urinary bladder, http://en.wikipedia.org/wiki/Urothelium. Image available for use under CCA license.

[35]

S. Turner and J. A. Sheratt, Intercellular adhesion and cancer invasion: A discrete simulation using the extended potts model, J. Theor. Biol., 216 (2002), 85-100. doi: 10.1006/jtbi.2001.2522.

[36]

K. Vasala, P. Paakko and T. Turpeenniemi-Hujanen, Matrix metalloproteinase-9 ( MMP-9) immunoreactive protein in urinary bladder cancer: A marker of favorable prognosis, Anticancer Research, 28 (2008), 1757-1762.

[37]

J. L. Vasquez, "Porous Medium Equation. Mathematical Theory," Oxford University Press, Oxford, 2007.

[38]

S. M. Wnek, M. K. Medeirosa, K. E. Eblinb and A. J. Gandolfi, Persistence of DNA damage following exposure of human bladder cells to chronic monomethylarsonous acid, Tox. and Appl. Pharm., 241 (2009), 202-209. doi: 10.1016/j.taap.2009.08.016.

show all references

References:
[1]

A. E. Anderson, A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion, Mathematical Medicine and Biology, 22 (2005), 163-186. doi: 10.1093/imammb/dqi005.

[2]

F. Andreu, V. Caselles and J. Mazan, Diffusion equations with finite speed of propagation, in "Functional Analysis and Evolution Equations" (eds. H. Amann et al), Birkhauser Basel, (2008), 17-34. doi: 10.1007/978-3-7643-7794-6_2.

[3]

Atlas of Genetics and Cytogenetics in Oncology and Haematology, http://AtlasGeneticsOncology.org. Image available for use under CCA license.

[4]

A. H. Baker, D. R. Edwards and G. Murphy, Metalloproteinase inhibitors: Biological actions and therapeutic opportunities, J. of Cell Science, 115 (2002), 3719-3727. doi: 10.1242/jcs.00063.

[5]

C. E. Brinckerhoff and L. M.Matrisian, Matrix metalloproteinases: A tail of frog that became a prince, Nature Reviews, Molecular Cell Biology, 3 (2002) 207-214.

[6]

H. M Byrne, M. A. J. Chaplain, G. J. Pettet and D. L. S. McElwain, A mathematical model of trophoblast invasion, J. of Theor. Medicine, 1 (1999), 275-286. doi: 10.1080/10273669908833026.

[7]

C. Chang and Z. Werb, The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis, Trends in Cell Biology, 11 (2001), 37-43.

[8]

M. A. J. Chaplain and G. Lolas, Mathematical modeling of cancer invasion of tissue: Dynamic heterogeneity, Networks and Heterogeneous Media, 1 (2006), 399-439 doi: 10.3934/nhm.2006.1.399.

[9]

L. M. Coussens, B. Fingleton and L. M. Matrisian, Matrix metalloproteinase inhibitors and cancer: Trials and tribulations, Science, 295 (2002), 2387-2392. doi: 10.1126/science.1067100.

[10]

G. B. Ermentrout and L. Edelstein-Keshet, Cellular automata approaches to biological modelling, J. Theor. Biol., 160 (1993), 97-133. doi: 10.1006/jtbi.1993.1007.

[11]

R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Research, 56 (1996), 5745-5753.

[12]

B. George, R. H. Datar and R. J. Cote, Molecular biology of bladder cancer: cell cycle alterations, in "Textbook of Bladder Cancer" (eds. S. P. Lerner, et al), Taylor & Francis, (2006), 107-122.

[13]

G. Giannelli, J. Falk-Marzillier, O. Schiraldi, W. G. Stetler-Stevenson and V. Quaranta, Induction of cell migration by matrix metalloprotease-2 cleavage of lamitiin-5, Science, 277 (1997), 225-228.

[14]

F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model, Phys. Rev. Lett., 69 (1992), 2013-2016. doi: 10.1103/PhysRevLett.69.2013.

[15]

G. P. Hemstreet III and E. M, Messing, Early detection for bladder cancer, in "Textbook of Bladder Cancer" (eds. S. P. Lerner, et al), Taylor & Francis, (2006), 257-266.

[16]

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward and D. Forman, Global cancer statistics, CA: A Cancer J. for Clinicians, 61 (2011), 69-90. doi: 10.3322/caac.20107.

[17]

T. Kakizoe, Development and progression of urothelial carcinoma, Cancer Science, 97 (1982), 821-828. doi: 10.1111/j.1349-7006.2006.00264.x.

[18]

E. Kashdan and S. Bunimovich-Mendrazitsky, "Multi-Scale Model of Bladder Cancer Development," Discrete and Continuous Dynamical Systems, 2011, 803-812.

[19]

M. Kirsch-Voldersa, M. Aardemab and A. Elhajoujic, Concepts of threshold in mutagenesis and carcinogenesis, Mutation Res., 464 (2000), 3-11. doi: 10.1016/S1383-5718(99)00161-8.

[20]

C. J. Malemud, Matrix metalloproteinases (MMPs) in health and disease: an overview, Frontiers in Bioscience, 11 (2006), 1696-1701. doi: 10.2741/1915.

[21]

B. P. Marchant, J. Norbury and J. A. Sherratt, Travelling wave solutions to a haptotaxis-dominated model of malignant invasion, Nonlinearity, 14 (2001), 1653-1671. doi: 10.1088/0951-7715/14/6/313.

[22]

C. J. Marshall, L. M. Franks and A. W. Carbonell, Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas, J. Natl. Cancer Inst., 58 (1977), 1743-1751.

[23]

L. L. Munn, C. Kunert and J. A. Tyrrell, Modeling tumor blood vessel dynamics, in "Mathematical Methods and Models in Biomedicine" (eds. U. Ledzewicz, et al), Springer, (2012), 113-142. doi: 10.1007/978-1-4614-4178-6_5.

[24]

G. Murphy and J. Gavrilovic, The mathematical modelling of Proteolysis and cell migration: Creating a path?, Curr. Opin. Cell Biol., 11 (1999), 614-621.

[25]

K. Nabeshima, W. S. Lane and C. Biswas, Partial sequencing and characterisation of the tumour cell- derived collagenase stimulatory factor, Arch. Biochem. Biophys., 285 (1991), 90-96.

[26]

U. 0. Nseyo and D. L. Lamm, Immunotherapy of bladder cancer, Seminars in Surgical Oncology, 13 (1997), 342-349.

[27]

J. E. Nutt, G. C. Durkan, J. vK. Mellon and J. Lunce, Matrix metalloproteinases (MMPs) in bladder cancer: The induction of MMP9 by epidermal growth factor and its detection in urine, BJU International, 91 (2003), 99-104. doi: 10.1046/j.1464-410X.2003.04020.x.

[28]

A. J. Perumpanani, J. A. Sherratt, J. Norbury and H. M. Byrne, A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion, Physica D, 126 (1999), 145-159. doi: 10.1016/S0167-2789(98)00272-3.

[29]

V. Quaranta, K. A. Rejniak, P. Gerlee and A. R. A. Anderson, Invasion emerges from cancer cell adaptation to competitive microenvironments: Quantitative predictions from multiscale mathematical models, Seminars in Cancer Biology, 18 (2008), 338-348. doi: 10.1016/j.semcancer.2008.03.018.

[30]

I. Ramis-Conde, M. A. J. Chaplain and A. R. A. Anderson, Mathematical modelling of cancer cell invasion of tissue, Mathematical and Computer Modelling, 47 (2008), 533-545. doi: 10.1016/j.mcm.2007.02.034.

[31]

C. J. Sherr, Cancer cell cycles, Science, 274 (1996), 1672-1677. doi: 10.1126/science.274.5293.1672.

[32]

W. G. Stetler- Stevenson, S. Aznavoorian and L. A. Liotta, Tumor cell interactions with the extracellular matrix during invasion and metastasis, Ann. Rev. Cell Biol., 9 (1993), 541-573.

[33]

J. Testa, Loss of metastatic phenotype by a human epidermoid carcinoma cell line hep-3 is accompanied by increased expression of tissue inhibitor of matrix metalloproteinase-2, Cancer Res., 52 (1992), 5597-5603.

[34]

Transitional epithelium of the urinary bladder, http://en.wikipedia.org/wiki/Urothelium. Image available for use under CCA license.

[35]

S. Turner and J. A. Sheratt, Intercellular adhesion and cancer invasion: A discrete simulation using the extended potts model, J. Theor. Biol., 216 (2002), 85-100. doi: 10.1006/jtbi.2001.2522.

[36]

K. Vasala, P. Paakko and T. Turpeenniemi-Hujanen, Matrix metalloproteinase-9 ( MMP-9) immunoreactive protein in urinary bladder cancer: A marker of favorable prognosis, Anticancer Research, 28 (2008), 1757-1762.

[37]

J. L. Vasquez, "Porous Medium Equation. Mathematical Theory," Oxford University Press, Oxford, 2007.

[38]

S. M. Wnek, M. K. Medeirosa, K. E. Eblinb and A. J. Gandolfi, Persistence of DNA damage following exposure of human bladder cells to chronic monomethylarsonous acid, Tox. and Appl. Pharm., 241 (2009), 202-209. doi: 10.1016/j.taap.2009.08.016.

[1]

T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195

[2]

Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks and Heterogeneous Media, 2019, 14 (1) : 1-22. doi: 10.3934/nhm.2019001

[3]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[4]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[5]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083

[6]

Wilhelm Stannat, Lukas Wessels. Deterministic control of stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2021, 10 (4) : 701-722. doi: 10.3934/eect.2020087

[7]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control and Related Fields, 2022, 12 (1) : 147-168. doi: 10.3934/mcrf.2021005

[8]

Christoph Sadée, Eugene Kashdan. A model of thermotherapy treatment for bladder cancer. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1169-1183. doi: 10.3934/mbe.2016037

[9]

Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723

[10]

Peter E. Kloeden, Thomas Lorenz, Meihua Yang. Reaction-diffusion equations with a switched--off reaction zone. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1907-1933. doi: 10.3934/cpaa.2014.13.1907

[11]

Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure and Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495

[12]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[13]

Akinori Awazu. Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences & Engineering, 2008, 5 (3) : 419-427. doi: 10.3934/mbe.2008.5.419

[14]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[15]

Antoine Mellet, Jean-Michel Roquejoffre, Yannick Sire. Generalized fronts for one-dimensional reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 303-312. doi: 10.3934/dcds.2010.26.303

[16]

Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253

[17]

Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks and Heterogeneous Media, 2016, 11 (3) : 369-393. doi: 10.3934/nhm.2016001

[18]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic and Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[19]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[20]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (5)

[Back to Top]