2013, 10(3): 743-759. doi: 10.3934/mbe.2013.10.743

Calcium waves with mechano-chemical couplings

1. 

Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland

2. 

Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

Received  June 2012 Revised  November 2012 Published  April 2013

As follows from experiments, waves of calcium concentration in biological tissues can be easily excited by a local mechanical stimulation. Therefore the complete theory of calcium waves should also take into account coupling between mechanical and chemical processes. In this paper we consider the existence of travelling waves for buffered systems, as in [22], completed, however, by an equation for mechanical equilibrium and respective mechanochemical coupling terms. Thus the considered, coupled system consists of reaction-diffusion equations (for the calcium and buffers concentrations) and equations for the balance of mechanical forces.
Citation: Bogdan Kazmierczak, Zbigniew Peradzynski. Calcium waves with mechano-chemical couplings. Mathematical Biosciences & Engineering, 2013, 10 (3) : 743-759. doi: 10.3934/mbe.2013.10.743
References:
[1]

D. Bia, R. Armentano, D. Craiem, J. Grignola, F. Gines, A. Simon and J. Levenson, Smooth muscle role on pulmonary arterial function during acute pulmonary hypertension in sheep,, Acta Physiol. Scand., 181 (2004), 359.  doi: 10.1111/j.1365-201X.2004.01294.x.  Google Scholar

[2]

E. C. M. Crooks, On the Vol'pert theory of travelling wave solutions for parabolic equations,, Nonlinear Analysis TM & A, 26 (1996), 1621.  doi: 10.1016/0362-546X(95)00038-W.  Google Scholar

[3]

P. B. Dobrin and J. M. Doyle, Vascular smooth muscle and the anisotropy of dog carotid artery,, Circ. Res., 27 (1970), 105.  doi: 10.1161/01.RES.27.1.105.  Google Scholar

[4]

A. Doyle, W. Marganski and J. Lee, Calcium transients induce spatially coordinated increases in traction force during the movement of fish keratocytes,, Journal of Cell Science, 117 (2004), 2203.  doi: 10.1242/jcs.01087.  Google Scholar

[5]

M. Falcke, Reading the patterns in living cells - the physics of $Ca^{2+}$ signaling,, Advances in Physics, 53 (2004), 255.   Google Scholar

[6]

G. Flores, A. Minzoni, K. Mischaikov and V. Moll, Post-fertilization travelling waves on eggs,, Nonlinear Analysis: Theory, 36 (1999), 45.  doi: 10.1016/S0362-546X(97)00696-2.  Google Scholar

[7]

D. Hong, D. Jaron, D. G. Buerk and K. A. Barbee, Heterogeneous response of microvascular endothelial cells to shear stress,, Am. J. Physiol. (Heart Circ. Physiol.), 290 (2006), 2498.  doi: 10.1152/ajpheart.00828.2005.  Google Scholar

[8]

L. F. Jaffe, The path of calcium in cytosolic calcium oscillations: A unifying hypothesis,, Proc. Natl. Acad. Sci. USA, 88 (1991), 9883.  doi: 10.1073/pnas.88.21.9883.  Google Scholar

[9]

L. F. Jaffe, Stretch-activated calcium channels relay fast calcium waves propagated by calcium-induced calcium influx,, Biol. Cell, 99 (2007), 75.  doi: 10.1042/BC20060031.  Google Scholar

[10]

N. R. Jorgensen, S. C. Teilmann, Z. Henriksen, R. Civitelli, O. H. Sorensen and T. H. Steinberg, Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells,, J. Biological Chemistry, 278 (2003), 4082.  doi: 10.1074/jbc.M205880200.  Google Scholar

[11]

B. Kazmierczak and Z. Peradzynski, Calcium waves with fast buffers and mechanical effects,, Journal of Mathematical Biology, 62 (2011), 1.  doi: 10.1007/s00285-009-0323-2.  Google Scholar

[12]

B. Kazmierczak and V. Volpert, Calcium waves in systems with immobile buffers as a limit of waves for systems with non zero diffusion,, Nonlinearity, 21 (2008), 71.  doi: 10.1088/0951-7715/21/1/004.  Google Scholar

[13]

B. Kazmierczak and V. Volpert, Travelling calcium waves in systems with non-diffusing buffers,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 883.  doi: 10.1142/S0218202508002899.  Google Scholar

[14]

B. Kazmierczak and V. Volpert, Existence of heteroclinic orbits for systems satisfying monotonicity conditions,, Nonlinear Analysis: Theory, 55 (2003), 467.  doi: 10.1016/S0362-546X(03)00247-5.  Google Scholar

[15]

J. Keener and J. Sneyd, "Mathematical Physiology,", Springer-Verlag, (1998).   Google Scholar

[16]

J. D. Murray, "Mathematical Biology,", 2nd edition, (1993).  doi: 10.1007/b98869.  Google Scholar

[17]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points,, J. Diff. Equat., 20 (1984), 225.  doi: 10.1016/0022-0396(84)90082-2.  Google Scholar

[18]

Z. Peradzynski, Diffusion of calcium in biological tissues and accompanying mechano-chemical effects,, Arch. Mech., 62 (2010), 423.   Google Scholar

[19]

Z. Peradzynski and B. Kazmierczak, On mechano-chemical calcium waves,, Archive of Applied Mechanics, 74 (2005), 827.  doi: 10.1007/s00419-005-0392-7.  Google Scholar

[20]

K. Piechor, Reaction-diffusion equation modelling calcium waves with fast buffering in visco-elastic environment,, Arch. Mech., 64 (2012), 477.   Google Scholar

[21]

M. Sato, N. Ohshima and R. M. Nerem, Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress,, Journal of Biomechanics, 29 (1996), 461.  doi: 10.1016/0021-9290(95)00069-0.  Google Scholar

[22]

J. Sneyd, P. D. Dalez and A. Duffy, Traveling waves in buffered systems: Applications to calcium waves,, SIAM J. Appl. Math., 58 (1998), 1178.  doi: 10.1137/S0036139996305074.  Google Scholar

[23]

A. E. Taylor, "Introduction to Functional Analysis,", J. Wiley and Sons, (1958).   Google Scholar

[24]

A. Volpert, V. Volpert and V. Volpert, "Traveling Wave Solutions of Parabolic Systems,", AMS, (1994).   Google Scholar

[25]

S. H. Young, H. S. Ennes, J. A. McRoberts, V. V. Chaban, S. K. Dea and E. A. Mayer, Calcium waves in colonic myocytes produced by mechanical and receptor-mediated stimulation,, Am. J. Physiol. Gastrointest. Liver Physiol., 276 (1999), 1204.   Google Scholar

show all references

References:
[1]

D. Bia, R. Armentano, D. Craiem, J. Grignola, F. Gines, A. Simon and J. Levenson, Smooth muscle role on pulmonary arterial function during acute pulmonary hypertension in sheep,, Acta Physiol. Scand., 181 (2004), 359.  doi: 10.1111/j.1365-201X.2004.01294.x.  Google Scholar

[2]

E. C. M. Crooks, On the Vol'pert theory of travelling wave solutions for parabolic equations,, Nonlinear Analysis TM & A, 26 (1996), 1621.  doi: 10.1016/0362-546X(95)00038-W.  Google Scholar

[3]

P. B. Dobrin and J. M. Doyle, Vascular smooth muscle and the anisotropy of dog carotid artery,, Circ. Res., 27 (1970), 105.  doi: 10.1161/01.RES.27.1.105.  Google Scholar

[4]

A. Doyle, W. Marganski and J. Lee, Calcium transients induce spatially coordinated increases in traction force during the movement of fish keratocytes,, Journal of Cell Science, 117 (2004), 2203.  doi: 10.1242/jcs.01087.  Google Scholar

[5]

M. Falcke, Reading the patterns in living cells - the physics of $Ca^{2+}$ signaling,, Advances in Physics, 53 (2004), 255.   Google Scholar

[6]

G. Flores, A. Minzoni, K. Mischaikov and V. Moll, Post-fertilization travelling waves on eggs,, Nonlinear Analysis: Theory, 36 (1999), 45.  doi: 10.1016/S0362-546X(97)00696-2.  Google Scholar

[7]

D. Hong, D. Jaron, D. G. Buerk and K. A. Barbee, Heterogeneous response of microvascular endothelial cells to shear stress,, Am. J. Physiol. (Heart Circ. Physiol.), 290 (2006), 2498.  doi: 10.1152/ajpheart.00828.2005.  Google Scholar

[8]

L. F. Jaffe, The path of calcium in cytosolic calcium oscillations: A unifying hypothesis,, Proc. Natl. Acad. Sci. USA, 88 (1991), 9883.  doi: 10.1073/pnas.88.21.9883.  Google Scholar

[9]

L. F. Jaffe, Stretch-activated calcium channels relay fast calcium waves propagated by calcium-induced calcium influx,, Biol. Cell, 99 (2007), 75.  doi: 10.1042/BC20060031.  Google Scholar

[10]

N. R. Jorgensen, S. C. Teilmann, Z. Henriksen, R. Civitelli, O. H. Sorensen and T. H. Steinberg, Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells,, J. Biological Chemistry, 278 (2003), 4082.  doi: 10.1074/jbc.M205880200.  Google Scholar

[11]

B. Kazmierczak and Z. Peradzynski, Calcium waves with fast buffers and mechanical effects,, Journal of Mathematical Biology, 62 (2011), 1.  doi: 10.1007/s00285-009-0323-2.  Google Scholar

[12]

B. Kazmierczak and V. Volpert, Calcium waves in systems with immobile buffers as a limit of waves for systems with non zero diffusion,, Nonlinearity, 21 (2008), 71.  doi: 10.1088/0951-7715/21/1/004.  Google Scholar

[13]

B. Kazmierczak and V. Volpert, Travelling calcium waves in systems with non-diffusing buffers,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 883.  doi: 10.1142/S0218202508002899.  Google Scholar

[14]

B. Kazmierczak and V. Volpert, Existence of heteroclinic orbits for systems satisfying monotonicity conditions,, Nonlinear Analysis: Theory, 55 (2003), 467.  doi: 10.1016/S0362-546X(03)00247-5.  Google Scholar

[15]

J. Keener and J. Sneyd, "Mathematical Physiology,", Springer-Verlag, (1998).   Google Scholar

[16]

J. D. Murray, "Mathematical Biology,", 2nd edition, (1993).  doi: 10.1007/b98869.  Google Scholar

[17]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points,, J. Diff. Equat., 20 (1984), 225.  doi: 10.1016/0022-0396(84)90082-2.  Google Scholar

[18]

Z. Peradzynski, Diffusion of calcium in biological tissues and accompanying mechano-chemical effects,, Arch. Mech., 62 (2010), 423.   Google Scholar

[19]

Z. Peradzynski and B. Kazmierczak, On mechano-chemical calcium waves,, Archive of Applied Mechanics, 74 (2005), 827.  doi: 10.1007/s00419-005-0392-7.  Google Scholar

[20]

K. Piechor, Reaction-diffusion equation modelling calcium waves with fast buffering in visco-elastic environment,, Arch. Mech., 64 (2012), 477.   Google Scholar

[21]

M. Sato, N. Ohshima and R. M. Nerem, Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress,, Journal of Biomechanics, 29 (1996), 461.  doi: 10.1016/0021-9290(95)00069-0.  Google Scholar

[22]

J. Sneyd, P. D. Dalez and A. Duffy, Traveling waves in buffered systems: Applications to calcium waves,, SIAM J. Appl. Math., 58 (1998), 1178.  doi: 10.1137/S0036139996305074.  Google Scholar

[23]

A. E. Taylor, "Introduction to Functional Analysis,", J. Wiley and Sons, (1958).   Google Scholar

[24]

A. Volpert, V. Volpert and V. Volpert, "Traveling Wave Solutions of Parabolic Systems,", AMS, (1994).   Google Scholar

[25]

S. H. Young, H. S. Ennes, J. A. McRoberts, V. V. Chaban, S. K. Dea and E. A. Mayer, Calcium waves in colonic myocytes produced by mechanical and receptor-mediated stimulation,, Am. J. Physiol. Gastrointest. Liver Physiol., 276 (1999), 1204.   Google Scholar

[1]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[2]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[3]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[4]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[5]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[6]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[7]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[11]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[12]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[16]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[17]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[18]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[19]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[20]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]