-
Previous Article
Spatial stochastic models of cancer: Fitness, migration, invasion
- MBE Home
- This Issue
-
Next Article
Hybrid discrete-continuous model of invasive bladder cancer
Calcium waves with mechano-chemical couplings
1. | Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland |
2. | Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland |
References:
[1] |
D. Bia, R. Armentano, D. Craiem, J. Grignola, F. Gines, A. Simon and J. Levenson, Smooth muscle role on pulmonary arterial function during acute pulmonary hypertension in sheep, Acta Physiol. Scand., 181 (2004), 359-366.
doi: 10.1111/j.1365-201X.2004.01294.x. |
[2] |
E. C. M. Crooks, On the Vol'pert theory of travelling wave solutions for parabolic equations, Nonlinear Analysis TM & A, 26 (1996), 1621-1642.
doi: 10.1016/0362-546X(95)00038-W. |
[3] |
P. B. Dobrin and J. M. Doyle, Vascular smooth muscle and the anisotropy of dog carotid artery, Circ. Res., 27 (1970), 105-119.
doi: 10.1161/01.RES.27.1.105. |
[4] |
A. Doyle, W. Marganski and J. Lee, Calcium transients induce spatially coordinated increases in traction force during the movement of fish keratocytes, Journal of Cell Science, 117 (2004), 2203-2214.
doi: 10.1242/jcs.01087. |
[5] |
M. Falcke, Reading the patterns in living cells - the physics of $Ca^{2+}$ signaling, Advances in Physics, 53 (2004), 255-440. |
[6] |
G. Flores, A. Minzoni, K. Mischaikov and V. Moll, Post-fertilization travelling waves on eggs, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 45-62.
doi: 10.1016/S0362-546X(97)00696-2. |
[7] |
D. Hong, D. Jaron, D. G. Buerk and K. A. Barbee, Heterogeneous response of microvascular endothelial cells to shear stress, Am. J. Physiol. (Heart Circ. Physiol.), 290 (2006), 2498-2508.
doi: 10.1152/ajpheart.00828.2005. |
[8] |
L. F. Jaffe, The path of calcium in cytosolic calcium oscillations: A unifying hypothesis, Proc. Natl. Acad. Sci. USA, 88 (1991), 9883-9887.
doi: 10.1073/pnas.88.21.9883. |
[9] |
L. F. Jaffe, Stretch-activated calcium channels relay fast calcium waves propagated by calcium-induced calcium influx, Biol. Cell, 99 (2007), 75-184.
doi: 10.1042/BC20060031. |
[10] |
N. R. Jorgensen, S. C. Teilmann, Z. Henriksen, R. Civitelli, O. H. Sorensen and T. H. Steinberg, Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells, J. Biological Chemistry, 278 (2003), 4082-4086.
doi: 10.1074/jbc.M205880200. |
[11] |
B. Kazmierczak and Z. Peradzynski, Calcium waves with fast buffers and mechanical effects, Journal of Mathematical Biology, 62 (2011), 1-38.
doi: 10.1007/s00285-009-0323-2. |
[12] |
B. Kazmierczak and V. Volpert, Calcium waves in systems with immobile buffers as a limit of waves for systems with non zero diffusion, Nonlinearity, 21 (2008), 71-96.
doi: 10.1088/0951-7715/21/1/004. |
[13] |
B. Kazmierczak and V. Volpert, Travelling calcium waves in systems with non-diffusing buffers, Mathematical Models and Methods in Applied Sciences, 18 (2008), 883-912
doi: 10.1142/S0218202508002899. |
[14] |
B. Kazmierczak and V. Volpert, Existence of heteroclinic orbits for systems satisfying monotonicity conditions, Nonlinear Analysis: Theory, Methods and Applications, 55 (2003), 467-491.
doi: 10.1016/S0362-546X(03)00247-5. |
[15] |
J. Keener and J. Sneyd, "Mathematical Physiology," Springer-Verlag, 1998. |
[16] |
J. D. Murray, "Mathematical Biology," 2nd edition, Springer-Verlag, Berlin, 1993.
doi: 10.1007/b98869. |
[17] |
K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Equat., 20 (1984), 225-256.
doi: 10.1016/0022-0396(84)90082-2. |
[18] |
Z. Peradzynski, Diffusion of calcium in biological tissues and accompanying mechano-chemical effects, Arch. Mech., 62 (2010), 423-440. |
[19] |
Z. Peradzynski and B. Kazmierczak, On mechano-chemical calcium waves, Archive of Applied Mechanics, 74 (2005), 827-833.
doi: 10.1007/s00419-005-0392-7. |
[20] |
K. Piechor, Reaction-diffusion equation modelling calcium waves with fast buffering in visco-elastic environment, Arch. Mech., 64 (2012), pp. 477-509 |
[21] |
M. Sato, N. Ohshima and R. M. Nerem, Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress, Journal of Biomechanics, 29 (1996), 461-467.
doi: 10.1016/0021-9290(95)00069-0. |
[22] |
J. Sneyd, P. D. Dalez and A. Duffy, Traveling waves in buffered systems: Applications to calcium waves, SIAM J. Appl. Math., 58 (1998), 1178-1192.
doi: 10.1137/S0036139996305074. |
[23] |
A. E. Taylor, "Introduction to Functional Analysis," J. Wiley and Sons, New York, 1958. |
[24] |
A. Volpert, V. Volpert and V. Volpert, "Traveling Wave Solutions of Parabolic Systems," AMS, Providence 1994. |
[25] |
S. H. Young, H. S. Ennes, J. A. McRoberts, V. V. Chaban, S. K. Dea and E. A. Mayer, Calcium waves in colonic myocytes produced by mechanical and receptor-mediated stimulation, Am. J. Physiol. Gastrointest. Liver Physiol., 276 (1999), 1204-1212. |
show all references
References:
[1] |
D. Bia, R. Armentano, D. Craiem, J. Grignola, F. Gines, A. Simon and J. Levenson, Smooth muscle role on pulmonary arterial function during acute pulmonary hypertension in sheep, Acta Physiol. Scand., 181 (2004), 359-366.
doi: 10.1111/j.1365-201X.2004.01294.x. |
[2] |
E. C. M. Crooks, On the Vol'pert theory of travelling wave solutions for parabolic equations, Nonlinear Analysis TM & A, 26 (1996), 1621-1642.
doi: 10.1016/0362-546X(95)00038-W. |
[3] |
P. B. Dobrin and J. M. Doyle, Vascular smooth muscle and the anisotropy of dog carotid artery, Circ. Res., 27 (1970), 105-119.
doi: 10.1161/01.RES.27.1.105. |
[4] |
A. Doyle, W. Marganski and J. Lee, Calcium transients induce spatially coordinated increases in traction force during the movement of fish keratocytes, Journal of Cell Science, 117 (2004), 2203-2214.
doi: 10.1242/jcs.01087. |
[5] |
M. Falcke, Reading the patterns in living cells - the physics of $Ca^{2+}$ signaling, Advances in Physics, 53 (2004), 255-440. |
[6] |
G. Flores, A. Minzoni, K. Mischaikov and V. Moll, Post-fertilization travelling waves on eggs, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 45-62.
doi: 10.1016/S0362-546X(97)00696-2. |
[7] |
D. Hong, D. Jaron, D. G. Buerk and K. A. Barbee, Heterogeneous response of microvascular endothelial cells to shear stress, Am. J. Physiol. (Heart Circ. Physiol.), 290 (2006), 2498-2508.
doi: 10.1152/ajpheart.00828.2005. |
[8] |
L. F. Jaffe, The path of calcium in cytosolic calcium oscillations: A unifying hypothesis, Proc. Natl. Acad. Sci. USA, 88 (1991), 9883-9887.
doi: 10.1073/pnas.88.21.9883. |
[9] |
L. F. Jaffe, Stretch-activated calcium channels relay fast calcium waves propagated by calcium-induced calcium influx, Biol. Cell, 99 (2007), 75-184.
doi: 10.1042/BC20060031. |
[10] |
N. R. Jorgensen, S. C. Teilmann, Z. Henriksen, R. Civitelli, O. H. Sorensen and T. H. Steinberg, Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells, J. Biological Chemistry, 278 (2003), 4082-4086.
doi: 10.1074/jbc.M205880200. |
[11] |
B. Kazmierczak and Z. Peradzynski, Calcium waves with fast buffers and mechanical effects, Journal of Mathematical Biology, 62 (2011), 1-38.
doi: 10.1007/s00285-009-0323-2. |
[12] |
B. Kazmierczak and V. Volpert, Calcium waves in systems with immobile buffers as a limit of waves for systems with non zero diffusion, Nonlinearity, 21 (2008), 71-96.
doi: 10.1088/0951-7715/21/1/004. |
[13] |
B. Kazmierczak and V. Volpert, Travelling calcium waves in systems with non-diffusing buffers, Mathematical Models and Methods in Applied Sciences, 18 (2008), 883-912
doi: 10.1142/S0218202508002899. |
[14] |
B. Kazmierczak and V. Volpert, Existence of heteroclinic orbits for systems satisfying monotonicity conditions, Nonlinear Analysis: Theory, Methods and Applications, 55 (2003), 467-491.
doi: 10.1016/S0362-546X(03)00247-5. |
[15] |
J. Keener and J. Sneyd, "Mathematical Physiology," Springer-Verlag, 1998. |
[16] |
J. D. Murray, "Mathematical Biology," 2nd edition, Springer-Verlag, Berlin, 1993.
doi: 10.1007/b98869. |
[17] |
K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Equat., 20 (1984), 225-256.
doi: 10.1016/0022-0396(84)90082-2. |
[18] |
Z. Peradzynski, Diffusion of calcium in biological tissues and accompanying mechano-chemical effects, Arch. Mech., 62 (2010), 423-440. |
[19] |
Z. Peradzynski and B. Kazmierczak, On mechano-chemical calcium waves, Archive of Applied Mechanics, 74 (2005), 827-833.
doi: 10.1007/s00419-005-0392-7. |
[20] |
K. Piechor, Reaction-diffusion equation modelling calcium waves with fast buffering in visco-elastic environment, Arch. Mech., 64 (2012), pp. 477-509 |
[21] |
M. Sato, N. Ohshima and R. M. Nerem, Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress, Journal of Biomechanics, 29 (1996), 461-467.
doi: 10.1016/0021-9290(95)00069-0. |
[22] |
J. Sneyd, P. D. Dalez and A. Duffy, Traveling waves in buffered systems: Applications to calcium waves, SIAM J. Appl. Math., 58 (1998), 1178-1192.
doi: 10.1137/S0036139996305074. |
[23] |
A. E. Taylor, "Introduction to Functional Analysis," J. Wiley and Sons, New York, 1958. |
[24] |
A. Volpert, V. Volpert and V. Volpert, "Traveling Wave Solutions of Parabolic Systems," AMS, Providence 1994. |
[25] |
S. H. Young, H. S. Ennes, J. A. McRoberts, V. V. Chaban, S. K. Dea and E. A. Mayer, Calcium waves in colonic myocytes produced by mechanical and receptor-mediated stimulation, Am. J. Physiol. Gastrointest. Liver Physiol., 276 (1999), 1204-1212. |
[1] |
Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21 |
[2] |
C. van der Mee, Stella Vernier Piro. Travelling waves for solid-gas reaction-diffusion systems. Conference Publications, 2003, 2003 (Special) : 872-879. doi: 10.3934/proc.2003.2003.872 |
[3] |
Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23 |
[4] |
Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382 |
[5] |
Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054 |
[6] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[7] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[8] |
Yuzo Hosono. Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 115-125. doi: 10.3934/dcdsb.2007.8.115 |
[9] |
Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515 |
[10] |
Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304 |
[11] |
A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure and Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65 |
[12] |
Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591 |
[13] |
Michaël Bages, Patrick Martinez. Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 817-869. doi: 10.3934/dcdsb.2010.14.817 |
[14] |
Tianran Zhang. Traveling waves for a reaction-diffusion model with a cyclic structure. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1859-1870. doi: 10.3934/dcdsb.2020006 |
[15] |
Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49 |
[16] |
Sheng-Chen Fu. Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 189-196. doi: 10.3934/dcdsb.2011.16.189 |
[17] |
Sheng-Chen Fu, Je-Chiang Tsai. Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4041-4069. doi: 10.3934/dcds.2013.33.4041 |
[18] |
Markus Gahn. Multi-scale modeling of processes in porous media - coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6511-6531. doi: 10.3934/dcdsb.2019151 |
[19] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[20] |
Wei Feng, Weihua Ruan, Xin Lu. On existence of wavefront solutions in mixed monotone reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 815-836. doi: 10.3934/dcdsb.2016.21.815 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]