-
Previous Article
Equilibrium solutions for microscopic stochastic systems in population dynamics
- MBE Home
- This Issue
-
Next Article
Calcium waves with mechano-chemical couplings
Spatial stochastic models of cancer: Fitness, migration, invasion
1. | Department of Mathematics, University of California Irvine, Irvine CA 92697, United States |
References:
[1] |
A. Anderson, M. Chaplain, K. Rejniak and J. Fozard, Single-cell based models in biology and medicine, Math. Med. Biol., 25 (2008), 185-186. |
[2] |
A. Anderson and V. Quaranta, Integrative mathematical oncology, Nature Reviews Cancer, 8 (2008), 227-244. |
[3] |
R. M. Anderson and R. M. May, Coevolution of hosts and parasites, Parasitology, 85 (1982), 411-426. |
[4] |
M. Boots, P. J. Hudson and A. Sasaki, Large shifts in pathogen virulence relate to host population structure, Science, 303 (2004), 842-844. |
[5] |
J. Breivik and G. Gaudernack, Carcinogenesis and natural selection: A new perspective to the genetics and epigenetics of colorectal cancer, Adv. Cancer Res., 76 (1999), 187-212. |
[6] |
H. Byrne, T. Alarcón, M. Owen, S. Webb and P. Maini, Modeling aspects of cancer dynamics: A review, Phi. Trans. R. Soc. A, 364 (2006), 1563-1578.
doi: 10.1098/rsta.2006.1786. |
[7] |
A. Chauvière, L. Preziosi and C. Verdier, "Cell Mechanics: From Single Scale-Based Models to Multiscale Modeling," CRC Press, 32, 2009.
doi: 10.1201/9781420094558. |
[8] |
B. Chopard, R. Ouared, A. Deutsch, H. Hatzikirou and D. Wolf-Gladrow, Lattice-gas cellular automaton models for biology: from fluids to cells, Acta Biotheoretica, 58 (2010), 329-340. |
[9] |
T. Deisboeck and G. Stamatakos, "Multiscale Cancer Modeling," CRC Press, 34, 2010. |
[10] |
T. Deisboeck, L. Zhang, J. Yoon and J. Costa, In silico cancer modeling: is it ready for prime time?,, in press., ().
|
[11] |
A. Deutsch and S. Dormann, "Cellular Automaton Modeling of Biological Pattern Formation," Birkhauser, 2005. |
[12] |
D. Drasdo and S. Höhme, On the role of physics in the growth and pattern of multicellular systems: What we learn from individual-cell based models?, J. Stat. Phys., 128 (2007), 287-345.
doi: 10.1007/s10955-007-9289-x. |
[13] |
D. Ebert and E. A. Herre, The evolution of parasitic diseases, Parasitol Today, 12 (1996), 96-101. |
[14] |
D. Ebert and K. L. Mangin, The influence of host demography on the evolution of virulence of a microsporidian gut parasite, Evolution, 51 (1997), 1828-1837. |
[15] |
A. Fasano, A. Bertuzzi and A. Gandolfi, Complex systems in biomedicine chapter mathematical modelling of tumour growth and treatment, Milan: Springer, (2006), 71-108.
doi: 10.1007/88-470-0396-2_3. |
[16] |
S. A. Frank, Models of parasite virulence, Q. Rev. Biol., 71 (1996), 37-78. |
[17] |
J. Galle, G. Aust, G. Schaller, T. Beyer and D. Drasdo, Individual cell-based models of the spatial temporal organization of multicellular systems- achievements and limitations, Cytometry, 69A (2006), 704-710. |
[18] |
R. Gatenby and P. Maini, Mathematical oncology: Cancer summed up, Nature, 421 (2003), 321. |
[19] |
D. Hanahan and R. Weinberg, The hallmarks of cancer, CELL, 100 (2000), {57-70}. |
[20] |
P. Hinow,, P. Gerlee, L. McCawley, V. Quaranta, M. Ciobanu, S. Wang,, J. Graham, B. Ayati, J. Claridge, K. Swanson, et al., A spatial model of tumor-host interaction: Application of chemotherapy, Mathematical Biosciences and Engineering: MBE, 6 (2009), 521.
doi: 10.3934/mbe.2009.6.521. |
[21] |
Y. Iwasa, F. Michor and M. A. Nowak, Stochastic tunnels in evolutionary dynamics, Genetics, 166 (2004), 1571-1579. |
[22] |
Y. Jiao and S. Torquato, A cellular automaton model for tumor growth in heterogeneous environment, Bulletin of the American Physical Society, 56 (2011). |
[23] |
N. Komarova, Loss- and gain-of-function mutations in cancer: Mass-action, spatial and hierarchical models, Jour. Stat. Phys., 128 (2007), 413-446.
doi: 10.1007/s10955-006-9238-0. |
[24] |
N. L. Komarova, Spatial stochastic models for cancer initiation and progression, Bull. Math. Biol., 68 (2006), 1573-1599.
doi: 10.1007/s11538-005-9046-8. |
[25] |
N. L. Komarova, A. Sengupta and M. A. Nowak, Mutation-selection networks of cancer initiation: Tumor suppressor genes and chromosomal instability, J. Theor. Biol., 223 (2003), 433-450.
doi: 10.1016/S0022-5193(03)00120-6. |
[26] |
B. R. Levin, The evolution and maintenance of virulence in microparasites, Emerg. Infect. Dis., 2 (1996), 93-102. |
[27] |
L. Merlo, J. Pepper, B. Reid and C. Maley, Cancer as an evolutionary and ecological process, Nat. Rev. Cancer, 6 (2006), 924-935. |
[28] |
F. Michor, Y. Iwasa, H. Rajagopalan, C. Lengauer and M. A. Nowak, Linear model of colon cancer initiation, Cell Cycle, 3 (2004), 358-362. |
[29] |
P. Moran, "The Statistical Processes of Evolutionary Theory," Clarendon, Oxford, 1962. |
[30] |
M. Nowak and K. Sigmund, Evolutionary dynamics of biological games, Science, 303 (2004), 793-799. |
[31] |
M. A. Nowak, N. L. Komarova, A. Sengupta, P. V. Jallepalli, I.-M. Shih, B. Vogelstein and C. Lengauer, The role of chromosomal instability in tumor initiation, Proc. Natl. Acad. Sci. U S A, 99 (2002), 16226-16231. |
[32] |
M. A. Nowak and R. M. May, Superinfection and the evolution of parasite virulence, Proc. Biol. Sci., 255 (1994), 81-89. |
[33] |
M. A. Nowak, F. Michor, N. L. Komarova and Y. Iwasa, Evolutionary dynamics of tumor suppressor gene inactivation, Proc. Natl. Acad. Sci. U S A, 101 (2004), 10635-10638. |
[34] |
P. Nowell, The clonal evolution of tumor cell populations, Science, 194 (1976), 23-28. |
[35] |
V. Quaranta, K. Rejniak, P. Gerlee and A. Anderson, Invasion emerges from cancer cell adaptation to competitive microenvironments: Quantitative predictions from multiscale mathematical models, Sem. Cancer Biol., in press, (2008). |
[36] |
K. Rejniak and A. Anderson, Hybrid models of tumor growth, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3 ( 2011), 115-125. |
[37] |
C. W. Rinker-Schaeffer, J. P. O'Keefe, D. R. Welch and D. Theodorescu, Metastasis suppressor proteins: Discovery, molecular mechanisms, and clinical application, CLINICAL CANCER RESEARCH, 12 (2006), 3882-3889. |
[38] |
J. Sagotsky and T. Deisboeck, Simulating cancer growth with agent-based models, Multiscale Cancer Modeling, 34 (2010), 173. |
[39] |
A. Sasaki and M. Boots, Parasite evolution and extinctions, Ecology Letters, 6 (2003), 176. |
[40] |
J. M. Smith, "Evolution and the Theory of Games," Cambridge University Press, 1982. |
[41] |
C. Thalhauser, J. Lowengrub, D. Stupack and N. Komarova, Research selection in spatial stochastic models of cancer: Migration as a key modulator of fitness, Biology Direct, 5 (2010), 21. |
[42] |
T. L. Vincent and J. S. Brown, "Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics," Cambridge University Press, 2005. |
[43] |
P. Vineis and M. Berwick, The population dynamics of cancer: A Darwinian perspective, Int. J. Epidemiol, 35 (2006), 1151-1159. |
[44] |
D. Wodarz and N. Komarova, "Computational Biology of Cancer: Lecture Notes and Mathematical Modeling," World Scientific, 2005. |
[45] |
S. Wright, The roles of mutation, inbreeding, crossbreeding, and selection in evolution, in "Proceedings of the Sixth International Congress on Genetics", (1932), 355-366. |
[46] |
L. Zhang, Z. Wang, J. Sagotsky and T. Deisboeck, Multiscale agent-based cancer modeling, Journal of Mathematical Biology, 58 (2009), 545-559.
doi: 10.1007/s00285-008-0211-1. |
show all references
References:
[1] |
A. Anderson, M. Chaplain, K. Rejniak and J. Fozard, Single-cell based models in biology and medicine, Math. Med. Biol., 25 (2008), 185-186. |
[2] |
A. Anderson and V. Quaranta, Integrative mathematical oncology, Nature Reviews Cancer, 8 (2008), 227-244. |
[3] |
R. M. Anderson and R. M. May, Coevolution of hosts and parasites, Parasitology, 85 (1982), 411-426. |
[4] |
M. Boots, P. J. Hudson and A. Sasaki, Large shifts in pathogen virulence relate to host population structure, Science, 303 (2004), 842-844. |
[5] |
J. Breivik and G. Gaudernack, Carcinogenesis and natural selection: A new perspective to the genetics and epigenetics of colorectal cancer, Adv. Cancer Res., 76 (1999), 187-212. |
[6] |
H. Byrne, T. Alarcón, M. Owen, S. Webb and P. Maini, Modeling aspects of cancer dynamics: A review, Phi. Trans. R. Soc. A, 364 (2006), 1563-1578.
doi: 10.1098/rsta.2006.1786. |
[7] |
A. Chauvière, L. Preziosi and C. Verdier, "Cell Mechanics: From Single Scale-Based Models to Multiscale Modeling," CRC Press, 32, 2009.
doi: 10.1201/9781420094558. |
[8] |
B. Chopard, R. Ouared, A. Deutsch, H. Hatzikirou and D. Wolf-Gladrow, Lattice-gas cellular automaton models for biology: from fluids to cells, Acta Biotheoretica, 58 (2010), 329-340. |
[9] |
T. Deisboeck and G. Stamatakos, "Multiscale Cancer Modeling," CRC Press, 34, 2010. |
[10] |
T. Deisboeck, L. Zhang, J. Yoon and J. Costa, In silico cancer modeling: is it ready for prime time?,, in press., ().
|
[11] |
A. Deutsch and S. Dormann, "Cellular Automaton Modeling of Biological Pattern Formation," Birkhauser, 2005. |
[12] |
D. Drasdo and S. Höhme, On the role of physics in the growth and pattern of multicellular systems: What we learn from individual-cell based models?, J. Stat. Phys., 128 (2007), 287-345.
doi: 10.1007/s10955-007-9289-x. |
[13] |
D. Ebert and E. A. Herre, The evolution of parasitic diseases, Parasitol Today, 12 (1996), 96-101. |
[14] |
D. Ebert and K. L. Mangin, The influence of host demography on the evolution of virulence of a microsporidian gut parasite, Evolution, 51 (1997), 1828-1837. |
[15] |
A. Fasano, A. Bertuzzi and A. Gandolfi, Complex systems in biomedicine chapter mathematical modelling of tumour growth and treatment, Milan: Springer, (2006), 71-108.
doi: 10.1007/88-470-0396-2_3. |
[16] |
S. A. Frank, Models of parasite virulence, Q. Rev. Biol., 71 (1996), 37-78. |
[17] |
J. Galle, G. Aust, G. Schaller, T. Beyer and D. Drasdo, Individual cell-based models of the spatial temporal organization of multicellular systems- achievements and limitations, Cytometry, 69A (2006), 704-710. |
[18] |
R. Gatenby and P. Maini, Mathematical oncology: Cancer summed up, Nature, 421 (2003), 321. |
[19] |
D. Hanahan and R. Weinberg, The hallmarks of cancer, CELL, 100 (2000), {57-70}. |
[20] |
P. Hinow,, P. Gerlee, L. McCawley, V. Quaranta, M. Ciobanu, S. Wang,, J. Graham, B. Ayati, J. Claridge, K. Swanson, et al., A spatial model of tumor-host interaction: Application of chemotherapy, Mathematical Biosciences and Engineering: MBE, 6 (2009), 521.
doi: 10.3934/mbe.2009.6.521. |
[21] |
Y. Iwasa, F. Michor and M. A. Nowak, Stochastic tunnels in evolutionary dynamics, Genetics, 166 (2004), 1571-1579. |
[22] |
Y. Jiao and S. Torquato, A cellular automaton model for tumor growth in heterogeneous environment, Bulletin of the American Physical Society, 56 (2011). |
[23] |
N. Komarova, Loss- and gain-of-function mutations in cancer: Mass-action, spatial and hierarchical models, Jour. Stat. Phys., 128 (2007), 413-446.
doi: 10.1007/s10955-006-9238-0. |
[24] |
N. L. Komarova, Spatial stochastic models for cancer initiation and progression, Bull. Math. Biol., 68 (2006), 1573-1599.
doi: 10.1007/s11538-005-9046-8. |
[25] |
N. L. Komarova, A. Sengupta and M. A. Nowak, Mutation-selection networks of cancer initiation: Tumor suppressor genes and chromosomal instability, J. Theor. Biol., 223 (2003), 433-450.
doi: 10.1016/S0022-5193(03)00120-6. |
[26] |
B. R. Levin, The evolution and maintenance of virulence in microparasites, Emerg. Infect. Dis., 2 (1996), 93-102. |
[27] |
L. Merlo, J. Pepper, B. Reid and C. Maley, Cancer as an evolutionary and ecological process, Nat. Rev. Cancer, 6 (2006), 924-935. |
[28] |
F. Michor, Y. Iwasa, H. Rajagopalan, C. Lengauer and M. A. Nowak, Linear model of colon cancer initiation, Cell Cycle, 3 (2004), 358-362. |
[29] |
P. Moran, "The Statistical Processes of Evolutionary Theory," Clarendon, Oxford, 1962. |
[30] |
M. Nowak and K. Sigmund, Evolutionary dynamics of biological games, Science, 303 (2004), 793-799. |
[31] |
M. A. Nowak, N. L. Komarova, A. Sengupta, P. V. Jallepalli, I.-M. Shih, B. Vogelstein and C. Lengauer, The role of chromosomal instability in tumor initiation, Proc. Natl. Acad. Sci. U S A, 99 (2002), 16226-16231. |
[32] |
M. A. Nowak and R. M. May, Superinfection and the evolution of parasite virulence, Proc. Biol. Sci., 255 (1994), 81-89. |
[33] |
M. A. Nowak, F. Michor, N. L. Komarova and Y. Iwasa, Evolutionary dynamics of tumor suppressor gene inactivation, Proc. Natl. Acad. Sci. U S A, 101 (2004), 10635-10638. |
[34] |
P. Nowell, The clonal evolution of tumor cell populations, Science, 194 (1976), 23-28. |
[35] |
V. Quaranta, K. Rejniak, P. Gerlee and A. Anderson, Invasion emerges from cancer cell adaptation to competitive microenvironments: Quantitative predictions from multiscale mathematical models, Sem. Cancer Biol., in press, (2008). |
[36] |
K. Rejniak and A. Anderson, Hybrid models of tumor growth, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3 ( 2011), 115-125. |
[37] |
C. W. Rinker-Schaeffer, J. P. O'Keefe, D. R. Welch and D. Theodorescu, Metastasis suppressor proteins: Discovery, molecular mechanisms, and clinical application, CLINICAL CANCER RESEARCH, 12 (2006), 3882-3889. |
[38] |
J. Sagotsky and T. Deisboeck, Simulating cancer growth with agent-based models, Multiscale Cancer Modeling, 34 (2010), 173. |
[39] |
A. Sasaki and M. Boots, Parasite evolution and extinctions, Ecology Letters, 6 (2003), 176. |
[40] |
J. M. Smith, "Evolution and the Theory of Games," Cambridge University Press, 1982. |
[41] |
C. Thalhauser, J. Lowengrub, D. Stupack and N. Komarova, Research selection in spatial stochastic models of cancer: Migration as a key modulator of fitness, Biology Direct, 5 (2010), 21. |
[42] |
T. L. Vincent and J. S. Brown, "Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics," Cambridge University Press, 2005. |
[43] |
P. Vineis and M. Berwick, The population dynamics of cancer: A Darwinian perspective, Int. J. Epidemiol, 35 (2006), 1151-1159. |
[44] |
D. Wodarz and N. Komarova, "Computational Biology of Cancer: Lecture Notes and Mathematical Modeling," World Scientific, 2005. |
[45] |
S. Wright, The roles of mutation, inbreeding, crossbreeding, and selection in evolution, in "Proceedings of the Sixth International Congress on Genetics", (1932), 355-366. |
[46] |
L. Zhang, Z. Wang, J. Sagotsky and T. Deisboeck, Multiscale agent-based cancer modeling, Journal of Mathematical Biology, 58 (2009), 545-559.
doi: 10.1007/s00285-008-0211-1. |
[1] |
Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1141-1156. doi: 10.3934/mbe.2015.12.1141 |
[2] |
Holly Gaff. Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463-473. doi: 10.3934/mbe.2011.8.463 |
[3] |
Katarzyna A. Rejniak. A Single-Cell Approach in Modeling the Dynamics of Tumor Microregions. Mathematical Biosciences & Engineering, 2005, 2 (3) : 643-655. doi: 10.3934/mbe.2005.2.643 |
[4] |
Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327 |
[5] |
Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423 |
[6] |
Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75-101. doi: 10.3934/mbe.2013.10.75 |
[7] |
T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195 |
[8] |
Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks and Heterogeneous Media, 2019, 14 (1) : 1-22. doi: 10.3934/nhm.2019001 |
[9] |
Lisette dePillis, Trevor Caldwell, Elizabeth Sarapata, Heather Williams. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 915-943. doi: 10.3934/dcdsb.2013.18.915 |
[10] |
Jian-Guo Liu, Min Tang, Li Wang, Zhennan Zhou. Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3011-3035. doi: 10.3934/dcdsb.2018297 |
[11] |
Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19 |
[12] |
Marco Scianna, Luigi Preziosi, Katarina Wolf. A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences & Engineering, 2013, 10 (1) : 235-261. doi: 10.3934/mbe.2013.10.235 |
[13] |
Michael Leguèbe. Cell scale modeling of electropermeabilization by periodic pulses. Mathematical Biosciences & Engineering, 2015, 12 (3) : 537-554. doi: 10.3934/mbe.2015.12.537 |
[14] |
A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2 (2) : 333-357. doi: 10.3934/nhm.2007.2.333 |
[15] |
Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363-384. doi: 10.3934/mbe.2014.11.363 |
[16] |
A. Chauviere, L. Preziosi, T. Hillen. Modeling the motion of a cell population in the extracellular matrix. Conference Publications, 2007, 2007 (Special) : 250-259. doi: 10.3934/proc.2007.2007.250 |
[17] |
Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723 |
[18] |
Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson. An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1219-1235. doi: 10.3934/mbe.2015.12.1219 |
[19] |
Katarzyna Pichór, Ryszard Rudnicki. Applications of stochastic semigroups to cell cycle models. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2365-2381. doi: 10.3934/dcdsb.2019099 |
[20] |
David S. Ross, Christina Battista, Antonio Cabal, Khamir Mehta. Dynamics of bone cell signaling and PTH treatments of osteoporosis. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2185-2200. doi: 10.3934/dcdsb.2012.17.2185 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]