
Previous Article
Equilibrium solutions for microscopic stochastic systems in population dynamics
 MBE Home
 This Issue

Next Article
Calcium waves with mechanochemical couplings
Spatial stochastic models of cancer: Fitness, migration, invasion
1.  Department of Mathematics, University of California Irvine, Irvine CA 92697, United States 
References:
[1] 
A. Anderson, M. Chaplain, K. Rejniak and J. Fozard, Singlecell based models in biology and medicine, Math. Med. Biol., 25 (2008), 185186. 
[2] 
A. Anderson and V. Quaranta, Integrative mathematical oncology, Nature Reviews Cancer, 8 (2008), 227244. 
[3] 
R. M. Anderson and R. M. May, Coevolution of hosts and parasites, Parasitology, 85 (1982), 411426. 
[4] 
M. Boots, P. J. Hudson and A. Sasaki, Large shifts in pathogen virulence relate to host population structure, Science, 303 (2004), 842844. 
[5] 
J. Breivik and G. Gaudernack, Carcinogenesis and natural selection: A new perspective to the genetics and epigenetics of colorectal cancer, Adv. Cancer Res., 76 (1999), 187212. 
[6] 
H. Byrne, T. Alarcón, M. Owen, S. Webb and P. Maini, Modeling aspects of cancer dynamics: A review, Phi. Trans. R. Soc. A, 364 (2006), 15631578. doi: 10.1098/rsta.2006.1786. 
[7] 
A. Chauvière, L. Preziosi and C. Verdier, "Cell Mechanics: From Single ScaleBased Models to Multiscale Modeling," CRC Press, 32, 2009. doi: 10.1201/9781420094558. 
[8] 
B. Chopard, R. Ouared, A. Deutsch, H. Hatzikirou and D. WolfGladrow, Latticegas cellular automaton models for biology: from fluids to cells, Acta Biotheoretica, 58 (2010), 329340. 
[9] 
T. Deisboeck and G. Stamatakos, "Multiscale Cancer Modeling," CRC Press, 34, 2010. 
[10] 
T. Deisboeck, L. Zhang, J. Yoon and J. Costa, In silico cancer modeling: is it ready for prime time?,, in press., (). 
[11] 
A. Deutsch and S. Dormann, "Cellular Automaton Modeling of Biological Pattern Formation," Birkhauser, 2005. 
[12] 
D. Drasdo and S. Höhme, On the role of physics in the growth and pattern of multicellular systems: What we learn from individualcell based models?, J. Stat. Phys., 128 (2007), 287345. doi: 10.1007/s109550079289x. 
[13] 
D. Ebert and E. A. Herre, The evolution of parasitic diseases, Parasitol Today, 12 (1996), 96101. 
[14] 
D. Ebert and K. L. Mangin, The influence of host demography on the evolution of virulence of a microsporidian gut parasite, Evolution, 51 (1997), 18281837. 
[15] 
A. Fasano, A. Bertuzzi and A. Gandolfi, Complex systems in biomedicine chapter mathematical modelling of tumour growth and treatment, Milan: Springer, (2006), 71108. doi: 10.1007/8847003962_3. 
[16] 
S. A. Frank, Models of parasite virulence, Q. Rev. Biol., 71 (1996), 3778. 
[17] 
J. Galle, G. Aust, G. Schaller, T. Beyer and D. Drasdo, Individual cellbased models of the spatial temporal organization of multicellular systems achievements and limitations, Cytometry, 69A (2006), 704710. 
[18] 
R. Gatenby and P. Maini, Mathematical oncology: Cancer summed up, Nature, 421 (2003), 321. 
[19] 
D. Hanahan and R. Weinberg, The hallmarks of cancer, CELL, 100 (2000), {5770}. 
[20] 
P. Hinow,, P. Gerlee, L. McCawley, V. Quaranta, M. Ciobanu, S. Wang,, J. Graham, B. Ayati, J. Claridge, K. Swanson, et al., A spatial model of tumorhost interaction: Application of chemotherapy, Mathematical Biosciences and Engineering: MBE, 6 (2009), 521. doi: 10.3934/mbe.2009.6.521. 
[21] 
Y. Iwasa, F. Michor and M. A. Nowak, Stochastic tunnels in evolutionary dynamics, Genetics, 166 (2004), 15711579. 
[22] 
Y. Jiao and S. Torquato, A cellular automaton model for tumor growth in heterogeneous environment, Bulletin of the American Physical Society, 56 (2011). 
[23] 
N. Komarova, Loss and gainoffunction mutations in cancer: Massaction, spatial and hierarchical models, Jour. Stat. Phys., 128 (2007), 413446. doi: 10.1007/s1095500692380. 
[24] 
N. L. Komarova, Spatial stochastic models for cancer initiation and progression, Bull. Math. Biol., 68 (2006), 15731599. doi: 10.1007/s1153800590468. 
[25] 
N. L. Komarova, A. Sengupta and M. A. Nowak, Mutationselection networks of cancer initiation: Tumor suppressor genes and chromosomal instability, J. Theor. Biol., 223 (2003), 433450. doi: 10.1016/S00225193(03)001206. 
[26] 
B. R. Levin, The evolution and maintenance of virulence in microparasites, Emerg. Infect. Dis., 2 (1996), 93102. 
[27] 
L. Merlo, J. Pepper, B. Reid and C. Maley, Cancer as an evolutionary and ecological process, Nat. Rev. Cancer, 6 (2006), 924935. 
[28] 
F. Michor, Y. Iwasa, H. Rajagopalan, C. Lengauer and M. A. Nowak, Linear model of colon cancer initiation, Cell Cycle, 3 (2004), 358362. 
[29] 
P. Moran, "The Statistical Processes of Evolutionary Theory," Clarendon, Oxford, 1962. 
[30] 
M. Nowak and K. Sigmund, Evolutionary dynamics of biological games, Science, 303 (2004), 793799. 
[31] 
M. A. Nowak, N. L. Komarova, A. Sengupta, P. V. Jallepalli, I.M. Shih, B. Vogelstein and C. Lengauer, The role of chromosomal instability in tumor initiation, Proc. Natl. Acad. Sci. U S A, 99 (2002), 1622616231. 
[32] 
M. A. Nowak and R. M. May, Superinfection and the evolution of parasite virulence, Proc. Biol. Sci., 255 (1994), 8189. 
[33] 
M. A. Nowak, F. Michor, N. L. Komarova and Y. Iwasa, Evolutionary dynamics of tumor suppressor gene inactivation, Proc. Natl. Acad. Sci. U S A, 101 (2004), 1063510638. 
[34] 
P. Nowell, The clonal evolution of tumor cell populations, Science, 194 (1976), 2328. 
[35] 
V. Quaranta, K. Rejniak, P. Gerlee and A. Anderson, Invasion emerges from cancer cell adaptation to competitive microenvironments: Quantitative predictions from multiscale mathematical models, Sem. Cancer Biol., in press, (2008). 
[36] 
K. Rejniak and A. Anderson, Hybrid models of tumor growth, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3 ( 2011), 115125. 
[37] 
C. W. RinkerSchaeffer, J. P. O'Keefe, D. R. Welch and D. Theodorescu, Metastasis suppressor proteins: Discovery, molecular mechanisms, and clinical application, CLINICAL CANCER RESEARCH, 12 (2006), 38823889. 
[38] 
J. Sagotsky and T. Deisboeck, Simulating cancer growth with agentbased models, Multiscale Cancer Modeling, 34 (2010), 173. 
[39] 
A. Sasaki and M. Boots, Parasite evolution and extinctions, Ecology Letters, 6 (2003), 176. 
[40] 
J. M. Smith, "Evolution and the Theory of Games," Cambridge University Press, 1982. 
[41] 
C. Thalhauser, J. Lowengrub, D. Stupack and N. Komarova, Research selection in spatial stochastic models of cancer: Migration as a key modulator of fitness, Biology Direct, 5 (2010), 21. 
[42] 
T. L. Vincent and J. S. Brown, "Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics," Cambridge University Press, 2005. 
[43] 
P. Vineis and M. Berwick, The population dynamics of cancer: A Darwinian perspective, Int. J. Epidemiol, 35 (2006), 11511159. 
[44] 
D. Wodarz and N. Komarova, "Computational Biology of Cancer: Lecture Notes and Mathematical Modeling," World Scientific, 2005. 
[45] 
S. Wright, The roles of mutation, inbreeding, crossbreeding, and selection in evolution, in "Proceedings of the Sixth International Congress on Genetics", (1932), 355366. 
[46] 
L. Zhang, Z. Wang, J. Sagotsky and T. Deisboeck, Multiscale agentbased cancer modeling, Journal of Mathematical Biology, 58 (2009), 545559. doi: 10.1007/s0028500802111. 
show all references
References:
[1] 
A. Anderson, M. Chaplain, K. Rejniak and J. Fozard, Singlecell based models in biology and medicine, Math. Med. Biol., 25 (2008), 185186. 
[2] 
A. Anderson and V. Quaranta, Integrative mathematical oncology, Nature Reviews Cancer, 8 (2008), 227244. 
[3] 
R. M. Anderson and R. M. May, Coevolution of hosts and parasites, Parasitology, 85 (1982), 411426. 
[4] 
M. Boots, P. J. Hudson and A. Sasaki, Large shifts in pathogen virulence relate to host population structure, Science, 303 (2004), 842844. 
[5] 
J. Breivik and G. Gaudernack, Carcinogenesis and natural selection: A new perspective to the genetics and epigenetics of colorectal cancer, Adv. Cancer Res., 76 (1999), 187212. 
[6] 
H. Byrne, T. Alarcón, M. Owen, S. Webb and P. Maini, Modeling aspects of cancer dynamics: A review, Phi. Trans. R. Soc. A, 364 (2006), 15631578. doi: 10.1098/rsta.2006.1786. 
[7] 
A. Chauvière, L. Preziosi and C. Verdier, "Cell Mechanics: From Single ScaleBased Models to Multiscale Modeling," CRC Press, 32, 2009. doi: 10.1201/9781420094558. 
[8] 
B. Chopard, R. Ouared, A. Deutsch, H. Hatzikirou and D. WolfGladrow, Latticegas cellular automaton models for biology: from fluids to cells, Acta Biotheoretica, 58 (2010), 329340. 
[9] 
T. Deisboeck and G. Stamatakos, "Multiscale Cancer Modeling," CRC Press, 34, 2010. 
[10] 
T. Deisboeck, L. Zhang, J. Yoon and J. Costa, In silico cancer modeling: is it ready for prime time?,, in press., (). 
[11] 
A. Deutsch and S. Dormann, "Cellular Automaton Modeling of Biological Pattern Formation," Birkhauser, 2005. 
[12] 
D. Drasdo and S. Höhme, On the role of physics in the growth and pattern of multicellular systems: What we learn from individualcell based models?, J. Stat. Phys., 128 (2007), 287345. doi: 10.1007/s109550079289x. 
[13] 
D. Ebert and E. A. Herre, The evolution of parasitic diseases, Parasitol Today, 12 (1996), 96101. 
[14] 
D. Ebert and K. L. Mangin, The influence of host demography on the evolution of virulence of a microsporidian gut parasite, Evolution, 51 (1997), 18281837. 
[15] 
A. Fasano, A. Bertuzzi and A. Gandolfi, Complex systems in biomedicine chapter mathematical modelling of tumour growth and treatment, Milan: Springer, (2006), 71108. doi: 10.1007/8847003962_3. 
[16] 
S. A. Frank, Models of parasite virulence, Q. Rev. Biol., 71 (1996), 3778. 
[17] 
J. Galle, G. Aust, G. Schaller, T. Beyer and D. Drasdo, Individual cellbased models of the spatial temporal organization of multicellular systems achievements and limitations, Cytometry, 69A (2006), 704710. 
[18] 
R. Gatenby and P. Maini, Mathematical oncology: Cancer summed up, Nature, 421 (2003), 321. 
[19] 
D. Hanahan and R. Weinberg, The hallmarks of cancer, CELL, 100 (2000), {5770}. 
[20] 
P. Hinow,, P. Gerlee, L. McCawley, V. Quaranta, M. Ciobanu, S. Wang,, J. Graham, B. Ayati, J. Claridge, K. Swanson, et al., A spatial model of tumorhost interaction: Application of chemotherapy, Mathematical Biosciences and Engineering: MBE, 6 (2009), 521. doi: 10.3934/mbe.2009.6.521. 
[21] 
Y. Iwasa, F. Michor and M. A. Nowak, Stochastic tunnels in evolutionary dynamics, Genetics, 166 (2004), 15711579. 
[22] 
Y. Jiao and S. Torquato, A cellular automaton model for tumor growth in heterogeneous environment, Bulletin of the American Physical Society, 56 (2011). 
[23] 
N. Komarova, Loss and gainoffunction mutations in cancer: Massaction, spatial and hierarchical models, Jour. Stat. Phys., 128 (2007), 413446. doi: 10.1007/s1095500692380. 
[24] 
N. L. Komarova, Spatial stochastic models for cancer initiation and progression, Bull. Math. Biol., 68 (2006), 15731599. doi: 10.1007/s1153800590468. 
[25] 
N. L. Komarova, A. Sengupta and M. A. Nowak, Mutationselection networks of cancer initiation: Tumor suppressor genes and chromosomal instability, J. Theor. Biol., 223 (2003), 433450. doi: 10.1016/S00225193(03)001206. 
[26] 
B. R. Levin, The evolution and maintenance of virulence in microparasites, Emerg. Infect. Dis., 2 (1996), 93102. 
[27] 
L. Merlo, J. Pepper, B. Reid and C. Maley, Cancer as an evolutionary and ecological process, Nat. Rev. Cancer, 6 (2006), 924935. 
[28] 
F. Michor, Y. Iwasa, H. Rajagopalan, C. Lengauer and M. A. Nowak, Linear model of colon cancer initiation, Cell Cycle, 3 (2004), 358362. 
[29] 
P. Moran, "The Statistical Processes of Evolutionary Theory," Clarendon, Oxford, 1962. 
[30] 
M. Nowak and K. Sigmund, Evolutionary dynamics of biological games, Science, 303 (2004), 793799. 
[31] 
M. A. Nowak, N. L. Komarova, A. Sengupta, P. V. Jallepalli, I.M. Shih, B. Vogelstein and C. Lengauer, The role of chromosomal instability in tumor initiation, Proc. Natl. Acad. Sci. U S A, 99 (2002), 1622616231. 
[32] 
M. A. Nowak and R. M. May, Superinfection and the evolution of parasite virulence, Proc. Biol. Sci., 255 (1994), 8189. 
[33] 
M. A. Nowak, F. Michor, N. L. Komarova and Y. Iwasa, Evolutionary dynamics of tumor suppressor gene inactivation, Proc. Natl. Acad. Sci. U S A, 101 (2004), 1063510638. 
[34] 
P. Nowell, The clonal evolution of tumor cell populations, Science, 194 (1976), 2328. 
[35] 
V. Quaranta, K. Rejniak, P. Gerlee and A. Anderson, Invasion emerges from cancer cell adaptation to competitive microenvironments: Quantitative predictions from multiscale mathematical models, Sem. Cancer Biol., in press, (2008). 
[36] 
K. Rejniak and A. Anderson, Hybrid models of tumor growth, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3 ( 2011), 115125. 
[37] 
C. W. RinkerSchaeffer, J. P. O'Keefe, D. R. Welch and D. Theodorescu, Metastasis suppressor proteins: Discovery, molecular mechanisms, and clinical application, CLINICAL CANCER RESEARCH, 12 (2006), 38823889. 
[38] 
J. Sagotsky and T. Deisboeck, Simulating cancer growth with agentbased models, Multiscale Cancer Modeling, 34 (2010), 173. 
[39] 
A. Sasaki and M. Boots, Parasite evolution and extinctions, Ecology Letters, 6 (2003), 176. 
[40] 
J. M. Smith, "Evolution and the Theory of Games," Cambridge University Press, 1982. 
[41] 
C. Thalhauser, J. Lowengrub, D. Stupack and N. Komarova, Research selection in spatial stochastic models of cancer: Migration as a key modulator of fitness, Biology Direct, 5 (2010), 21. 
[42] 
T. L. Vincent and J. S. Brown, "Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics," Cambridge University Press, 2005. 
[43] 
P. Vineis and M. Berwick, The population dynamics of cancer: A Darwinian perspective, Int. J. Epidemiol, 35 (2006), 11511159. 
[44] 
D. Wodarz and N. Komarova, "Computational Biology of Cancer: Lecture Notes and Mathematical Modeling," World Scientific, 2005. 
[45] 
S. Wright, The roles of mutation, inbreeding, crossbreeding, and selection in evolution, in "Proceedings of the Sixth International Congress on Genetics", (1932), 355366. 
[46] 
L. Zhang, Z. Wang, J. Sagotsky and T. Deisboeck, Multiscale agentbased cancer modeling, Journal of Mathematical Biology, 58 (2009), 545559. doi: 10.1007/s0028500802111. 
[1] 
Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 11411156. doi: 10.3934/mbe.2015.12.1141 
[2] 
Holly Gaff. Preliminary analysis of an agentbased model for a tickborne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463473. doi: 10.3934/mbe.2011.8.463 
[3] 
Katarzyna A. Rejniak. A SingleCell Approach in Modeling the Dynamics of Tumor Microregions. Mathematical Biosciences & Engineering, 2005, 2 (3) : 643655. doi: 10.3934/mbe.2005.2.643 
[4] 
Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQRV epidemic model based on cellular automata. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 327337. doi: 10.3934/naco.2015.5.327 
[5] 
Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 14231446. doi: 10.3934/dcds.2003.9.1423 
[6] 
Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agentbased model for elastoplastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75101. doi: 10.3934/mbe.2013.10.75 
[7] 
T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 195202. doi: 10.3934/dcds.2005.13.195 
[8] 
Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks and Heterogeneous Media, 2019, 14 (1) : 122. doi: 10.3934/nhm.2019001 
[9] 
Lisette dePillis, Trevor Caldwell, Elizabeth Sarapata, Heather Williams. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discrete and Continuous Dynamical Systems  B, 2013, 18 (4) : 915943. doi: 10.3934/dcdsb.2013.18.915 
[10] 
JianGuo Liu, Min Tang, Li Wang, Zhennan Zhou. Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics. Discrete and Continuous Dynamical Systems  B, 2019, 24 (7) : 30113035. doi: 10.3934/dcdsb.2018297 
[11] 
Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factordependent stem cell dynamics model with distributed delay. Discrete and Continuous Dynamical Systems  B, 2007, 8 (1) : 1938. doi: 10.3934/dcdsb.2007.8.19 
[12] 
Marco Scianna, Luigi Preziosi, Katarina Wolf. A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences & Engineering, 2013, 10 (1) : 235261. doi: 10.3934/mbe.2013.10.235 
[13] 
Michael Leguèbe. Cell scale modeling of electropermeabilization by periodic pulses. Mathematical Biosciences & Engineering, 2015, 12 (3) : 537554. doi: 10.3934/mbe.2015.12.537 
[14] 
A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2 (2) : 333357. doi: 10.3934/nhm.2007.2.333 
[15] 
Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363384. doi: 10.3934/mbe.2014.11.363 
[16] 
A. Chauviere, L. Preziosi, T. Hillen. Modeling the motion of a cell population in the extracellular matrix. Conference Publications, 2007, 2007 (Special) : 250259. doi: 10.3934/proc.2007.2007.250 
[17] 
Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 723736. doi: 10.3934/dcds.2005.12.723 
[18] 
Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson. An integrated cellular and subcellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences & Engineering, 2015, 12 (6) : 12191235. doi: 10.3934/mbe.2015.12.1219 
[19] 
Katarzyna Pichór, Ryszard Rudnicki. Applications of stochastic semigroups to cell cycle models. Discrete and Continuous Dynamical Systems  B, 2019, 24 (5) : 23652381. doi: 10.3934/dcdsb.2019099 
[20] 
David S. Ross, Christina Battista, Antonio Cabal, Khamir Mehta. Dynamics of bone cell signaling and PTH treatments of osteoporosis. Discrete and Continuous Dynamical Systems  B, 2012, 17 (6) : 21852200. doi: 10.3934/dcdsb.2012.17.2185 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]