• Previous Article
    On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth
  • MBE Home
  • This Issue
  • Next Article
    Spatial stochastic models of cancer: Fitness, migration, invasion
2013, 10(3): 777-786. doi: 10.3934/mbe.2013.10.777

Equilibrium solutions for microscopic stochastic systems in population dynamics

1. 

Institute of Applied Mathematics and Mechanics, University of Warsaw, 2, Banach Str., 02-097 Warsaw, Poland, Poland

Received  May 2012 Revised  October 2012 Published  April 2013

The present paper deals with the problem of existence of equilibrium solutions of equations describing the general population dynamics at the microscopic level of modified Liouville equation (individually--based model) corresponding to a Markov jump process. We show the existence of factorized equilibrium solutions and discuss uniqueness. The conditions guaranteeing uniqueness or non-uniqueness are proposed under the assumption of periodic structures.
Citation: MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777-786. doi: 10.3934/mbe.2013.10.777
References:
[1]

L. Arlotti and N. Bellomo, Solution of a new class of nonlinear kinetic models of population dynamics,, Appl. Math. Lett., 9 (1996), 65.  doi: 10.1016/0893-9659(96)00014-6.  Google Scholar

[2]

L. Arlotti, N. Bellomo and M. Lachowicz, Kinetic equations modelling population dynamics,, Transport Theory Statist. Phys., 29 (2000), 125.  doi: 10.1080/00411450008205864.  Google Scholar

[3]

N. Bellomo and G. Forni, Dynamics of tumor interaction with the host immune system,, Math. Comput. Modelling, 20 (1994), 107.  doi: 10.1016/0895-7177(94)90223-2.  Google Scholar

[4]

N. Bellomo, N. K. Li and Ph.K. Maini, On the foundations of cancer modelling: Selected topics, speculations and perspectives,, Math. Models Methods Appl. Sci., 18 (2008), 593.  doi: 10.1142/S0218202508002796.  Google Scholar

[5]

I. D. Chase, Models in hierarchy formation in animal societies,, Behavioural Sciences, 19 (1974), 374.  doi: 10.1002/bs.3830190604.  Google Scholar

[6]

E. Jäger and L. Segel, On the distribution of dominance in a population of interacting anonymous organisms,, SIAM J. Appl. Math., 52 (1992), 1442.  doi: 10.1137/0152083.  Google Scholar

[7]

E. Geigant, K. Ladizhansky and A. Mogilner, An integro-differential model for orientational distribution of $F$-actin in cells,, SIAM J. Appl. Math., 59 (1998), 787.   Google Scholar

[8]

K. Kang, B. Perthame, A. Stevens and J. J. L. Valázquez, An integro-differential model for alignment and orientational aggregation,, J. Diff. Eqs., 246 (2009), 1387.  doi: 10.1016/j.jde.2008.11.006.  Google Scholar

[9]

M. Lachowicz, Links between microscopic and macroscopic descriptions,, in, 1940 (2008), 201.  doi: 10.1007/978-3-540-78362-6.  Google Scholar

[10]

M. Lachowicz, Microscopic, mesoscopic and macroscopic descriptions of complex systems,, Prob. Engin. Mech., 26 (2011), 54.  doi: 10.1016/j.probengmech.2010.06.007.  Google Scholar

[11]

M. Lachowicz, Individually-based Markov processes modeling nonlinear systems in mathematical biology,, Nonlinear Analysis Real World Appl., 12 (2011), 2396.  doi: 10.1016/j.nonrwa.2011.02.014.  Google Scholar

[12]

M. Lachowicz and D. Wrzosek, Nonlocal bilinear equations. Equilibrium solutions and diffusive limit,, Math. Models Methods Appl. Sci., 11 (2001), 1375.  doi: 10.1142/S0218202501001380.  Google Scholar

[13]

I. Primi, A. Stevens and J. J. I. Velázquez, Mass-selection in alignment model with non-deterministic effect,, Comm. Partial Diff. Eqs., 34 (2009), 419.  doi: 10.1080/03605300902797171.  Google Scholar

[14]

G. Theraulaz, E. Bonabeau and J.-L. Deneubourg, Self-organization of hierarchies in animal societies: the case of the primitively eusocial wasp Polistes dominulusChrist,, J. Theoret. Biol., 174 (1995), 313.   Google Scholar

[15]

E. O. Wilson, "Sociobiology: The New Synthesis,", Harvard University Press, (1975).   Google Scholar

show all references

References:
[1]

L. Arlotti and N. Bellomo, Solution of a new class of nonlinear kinetic models of population dynamics,, Appl. Math. Lett., 9 (1996), 65.  doi: 10.1016/0893-9659(96)00014-6.  Google Scholar

[2]

L. Arlotti, N. Bellomo and M. Lachowicz, Kinetic equations modelling population dynamics,, Transport Theory Statist. Phys., 29 (2000), 125.  doi: 10.1080/00411450008205864.  Google Scholar

[3]

N. Bellomo and G. Forni, Dynamics of tumor interaction with the host immune system,, Math. Comput. Modelling, 20 (1994), 107.  doi: 10.1016/0895-7177(94)90223-2.  Google Scholar

[4]

N. Bellomo, N. K. Li and Ph.K. Maini, On the foundations of cancer modelling: Selected topics, speculations and perspectives,, Math. Models Methods Appl. Sci., 18 (2008), 593.  doi: 10.1142/S0218202508002796.  Google Scholar

[5]

I. D. Chase, Models in hierarchy formation in animal societies,, Behavioural Sciences, 19 (1974), 374.  doi: 10.1002/bs.3830190604.  Google Scholar

[6]

E. Jäger and L. Segel, On the distribution of dominance in a population of interacting anonymous organisms,, SIAM J. Appl. Math., 52 (1992), 1442.  doi: 10.1137/0152083.  Google Scholar

[7]

E. Geigant, K. Ladizhansky and A. Mogilner, An integro-differential model for orientational distribution of $F$-actin in cells,, SIAM J. Appl. Math., 59 (1998), 787.   Google Scholar

[8]

K. Kang, B. Perthame, A. Stevens and J. J. L. Valázquez, An integro-differential model for alignment and orientational aggregation,, J. Diff. Eqs., 246 (2009), 1387.  doi: 10.1016/j.jde.2008.11.006.  Google Scholar

[9]

M. Lachowicz, Links between microscopic and macroscopic descriptions,, in, 1940 (2008), 201.  doi: 10.1007/978-3-540-78362-6.  Google Scholar

[10]

M. Lachowicz, Microscopic, mesoscopic and macroscopic descriptions of complex systems,, Prob. Engin. Mech., 26 (2011), 54.  doi: 10.1016/j.probengmech.2010.06.007.  Google Scholar

[11]

M. Lachowicz, Individually-based Markov processes modeling nonlinear systems in mathematical biology,, Nonlinear Analysis Real World Appl., 12 (2011), 2396.  doi: 10.1016/j.nonrwa.2011.02.014.  Google Scholar

[12]

M. Lachowicz and D. Wrzosek, Nonlocal bilinear equations. Equilibrium solutions and diffusive limit,, Math. Models Methods Appl. Sci., 11 (2001), 1375.  doi: 10.1142/S0218202501001380.  Google Scholar

[13]

I. Primi, A. Stevens and J. J. I. Velázquez, Mass-selection in alignment model with non-deterministic effect,, Comm. Partial Diff. Eqs., 34 (2009), 419.  doi: 10.1080/03605300902797171.  Google Scholar

[14]

G. Theraulaz, E. Bonabeau and J.-L. Deneubourg, Self-organization of hierarchies in animal societies: the case of the primitively eusocial wasp Polistes dominulusChrist,, J. Theoret. Biol., 174 (1995), 313.   Google Scholar

[15]

E. O. Wilson, "Sociobiology: The New Synthesis,", Harvard University Press, (1975).   Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[3]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[4]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[5]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

[6]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[7]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[8]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288

[9]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[10]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[11]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[12]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[13]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

[14]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[15]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[16]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[17]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[18]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[19]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[20]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]