• Previous Article
    On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth
  • MBE Home
  • This Issue
  • Next Article
    Modeling bacterial attachment to surfaces as an early stage of biofilm development
2013, 10(3): 803-819. doi: 10.3934/mbe.2013.10.803

On the MTD paradigm and optimal control for multi-drug cancer chemotherapy

1. 

Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653, United States, United States

2. 

Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Mo 63130

Received  October 2012 Revised  December 2012 Published  April 2013

In standard chemotherapy protocols, drugs are given at maximum tolerated doses (MTD) with rest periods in between. In this paper, we briefly discuss the rationale behind this therapy approach and, using as example multi-drug cancer chemotherapy with a cytotoxic and cytostatic agent, show that these types of protocols are optimal in the sense of minimizing a weighted average of the number of tumor cells (taken both at the end of therapy and at intermediate times) and the total dose given if it is assumed that the tumor consists of a homogeneous population of chemotherapeutically sensitive cells. A $2$-compartment linear model is used to model the pharmacokinetic equations for the drugs.
Citation: Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences & Engineering, 2013, 10 (3) : 803-819. doi: 10.3934/mbe.2013.10.803
References:
[1]

M. R. Alison and C. E. Sarraf, "Understanding Cancer-From Basic Science to Clinical Practice,", Cambridge University Press, (1997). Google Scholar

[2]

B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory,", Springer Verlag, 40 (2003). Google Scholar

[3]

H. Derendorf, T. Gramatte and H. G. Schaefer, "Pharmacokinetics - Introduction into Theory and Practice,", (in German), (). Google Scholar

[4]

M. Eisen, "Mathematical Models in Cell Biology and Cancer Chemotherapy,", Lecture Notes in Biomathematics, 30 (1979). Google Scholar

[5]

P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing long-term burden: The logic for metronomic chemotherapeutic dosing and its angiogenic basis,, J. of Theoretical Biology, 220 (2003), 545. Google Scholar

[6]

M. Kimmel and A. Swierniak, An optimal control problem related to leukemia chemotherapy,, Scientific Bulletin of the Silesian Technical University, 65 (1983), 120. Google Scholar

[7]

U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics,, J. of Mathematical Biology, 64 (2012), 557. doi: 10.1007/s00285-011-0424-6. Google Scholar

[8]

U. Ledzewicz and H. Schättler, Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy,, J. of Optimization Theory and Applications - JOTA, 114 (2002), 609. doi: 10.1023/A:1016027113579. Google Scholar

[9]

U. Ledzewicz and H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy,, J. of Biological Systems, 10 (2002), 183. doi: 10.1142/S0218339002000597. Google Scholar

[10]

U. Ledzewicz, H. Schättler and A. Swierniak, Finite dimensional models of drug resistant and phase specific cancer chemotherapy,, J. of Medical Information Technology, 8 (2004), 5. Google Scholar

[11]

U. Ledzewicz and H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem,, Discrete and Continuous Dynamical Systems, 6 (2006), 129. Google Scholar

[12]

U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. on Control and Optimization, 46 (2007), 1052. doi: 10.1137/060665294. Google Scholar

[13]

U. Ledzewicz and H. Schaettler, Singular controls and chattering arcs in optimal control problems arising in biomedicine,, Control and Cybernetics, 38 (2009), 1501. Google Scholar

[14]

A. P. Lyss, Enzymes and random synthetics,, in, (1992), 403. Google Scholar

[15]

J. C. Panetta, Y. Yanishevski, C. H. Pui, J. T. Sandlund, J. Rubnitz, G. K. Rivera, W. E. Evans and M. V. Relling, A mathematical model of in vivo methotrexate accumulation in acute lymphoblastic leukemia,, Cancer Chemotherapy and Pharmacology, 50 (2002), 419. doi: 10.1007/s00280-002-0511-x. Google Scholar

[16]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", MacMillan, (1964). Google Scholar

[17]

H. Schättler and U. Ledzewicz, "Geometric Optimal Control: Theory, Methods and Examples,", Springer Verlag, (2012). doi: 10.1007/978-1-4614-3834-2. Google Scholar

[18]

H. Schättler, U. Ledzewicz, S. Mahmoudian Dehkordi and M. Reisi Gahrooi, A geometric analysis of bang-bang extremals in optimal control problems for combination cancer chemotherapy,, Proc. of the 51st IEEE Conference on Decision and Control, (2012), 7691. Google Scholar

[19]

H. E. Skipper, Perspectives in cancer chemotherapy: Therapeutic design,, Cancer Research, 24 (1964), 1295. Google Scholar

[20]

J. Smieja and A. Swierniak, Different models of chemotherapy taking into account drug resistance stemming from gene amplification,, Int. J. of Applied Mathematics and Computer Science, 13 (2003), 297. Google Scholar

[21]

G. W. Swan, Role of optimal control in cancer chemotherapy,, Mathematical Biosciences, 101 (1990), 237. doi: 10.1016/0025-5564(90)90021-P. Google Scholar

[22]

A. Swierniak, Optimal treatment protocols in leukemia - modelling the proliferation cycle,, Proceedings of the 12th IMACS World Congress, 4 (1988), 170. Google Scholar

[23]

A. Swierniak, Some control problems for simplest models of proliferation cycle,, Applied mathematics and Computer Science, 4 (1994), 223. Google Scholar

[24]

A. Swierniak, Cell cycle as an object of control,, J. of Biological Systems, 3 (1995), 41. doi: 10.1142/S0218339095000058. Google Scholar

[25]

A. Swierniak, Direct and indirect control of cancer populations,, Bulletin of the Polish Academy of Sciences, 56 (2008), 367. Google Scholar

[26]

A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy,, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357. Google Scholar

[27]

A. Swierniak, A. Polanski and M. Kimmel, Optimal control problems arising in cell-cycle-specific cancer chemotherapy,, Cell Proliferation, 29 (1996), 117. Google Scholar

[28]

A. Swierniak, A. Polanski, M. Kimmel, A. Bobrowski and J. Smieja, Qualitative analysis of controlled drug resistance model - inverse Laplace and semigroup approach,, Control and Cybernetics, 28 (1999), 61. Google Scholar

[29]

A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance,, Nonlinear Analysis, 47 (2000), 375. doi: 10.1016/S0362-546X(01)00184-5. Google Scholar

[30]

S. D. Weitman, E. Glatstein and B. A. Kamen, Back to the basics: the importance of concentration $\times$ time in oncology,, J. of Clinical Oncology, 11 (1993), 820. Google Scholar

[31]

T. E. Wheldon, "Mathematical Models in Cancer Research,", Boston-Philadelphia: Hilger Publishing, (1988). Google Scholar

show all references

References:
[1]

M. R. Alison and C. E. Sarraf, "Understanding Cancer-From Basic Science to Clinical Practice,", Cambridge University Press, (1997). Google Scholar

[2]

B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory,", Springer Verlag, 40 (2003). Google Scholar

[3]

H. Derendorf, T. Gramatte and H. G. Schaefer, "Pharmacokinetics - Introduction into Theory and Practice,", (in German), (). Google Scholar

[4]

M. Eisen, "Mathematical Models in Cell Biology and Cancer Chemotherapy,", Lecture Notes in Biomathematics, 30 (1979). Google Scholar

[5]

P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing long-term burden: The logic for metronomic chemotherapeutic dosing and its angiogenic basis,, J. of Theoretical Biology, 220 (2003), 545. Google Scholar

[6]

M. Kimmel and A. Swierniak, An optimal control problem related to leukemia chemotherapy,, Scientific Bulletin of the Silesian Technical University, 65 (1983), 120. Google Scholar

[7]

U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics,, J. of Mathematical Biology, 64 (2012), 557. doi: 10.1007/s00285-011-0424-6. Google Scholar

[8]

U. Ledzewicz and H. Schättler, Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy,, J. of Optimization Theory and Applications - JOTA, 114 (2002), 609. doi: 10.1023/A:1016027113579. Google Scholar

[9]

U. Ledzewicz and H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy,, J. of Biological Systems, 10 (2002), 183. doi: 10.1142/S0218339002000597. Google Scholar

[10]

U. Ledzewicz, H. Schättler and A. Swierniak, Finite dimensional models of drug resistant and phase specific cancer chemotherapy,, J. of Medical Information Technology, 8 (2004), 5. Google Scholar

[11]

U. Ledzewicz and H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem,, Discrete and Continuous Dynamical Systems, 6 (2006), 129. Google Scholar

[12]

U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. on Control and Optimization, 46 (2007), 1052. doi: 10.1137/060665294. Google Scholar

[13]

U. Ledzewicz and H. Schaettler, Singular controls and chattering arcs in optimal control problems arising in biomedicine,, Control and Cybernetics, 38 (2009), 1501. Google Scholar

[14]

A. P. Lyss, Enzymes and random synthetics,, in, (1992), 403. Google Scholar

[15]

J. C. Panetta, Y. Yanishevski, C. H. Pui, J. T. Sandlund, J. Rubnitz, G. K. Rivera, W. E. Evans and M. V. Relling, A mathematical model of in vivo methotrexate accumulation in acute lymphoblastic leukemia,, Cancer Chemotherapy and Pharmacology, 50 (2002), 419. doi: 10.1007/s00280-002-0511-x. Google Scholar

[16]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", MacMillan, (1964). Google Scholar

[17]

H. Schättler and U. Ledzewicz, "Geometric Optimal Control: Theory, Methods and Examples,", Springer Verlag, (2012). doi: 10.1007/978-1-4614-3834-2. Google Scholar

[18]

H. Schättler, U. Ledzewicz, S. Mahmoudian Dehkordi and M. Reisi Gahrooi, A geometric analysis of bang-bang extremals in optimal control problems for combination cancer chemotherapy,, Proc. of the 51st IEEE Conference on Decision and Control, (2012), 7691. Google Scholar

[19]

H. E. Skipper, Perspectives in cancer chemotherapy: Therapeutic design,, Cancer Research, 24 (1964), 1295. Google Scholar

[20]

J. Smieja and A. Swierniak, Different models of chemotherapy taking into account drug resistance stemming from gene amplification,, Int. J. of Applied Mathematics and Computer Science, 13 (2003), 297. Google Scholar

[21]

G. W. Swan, Role of optimal control in cancer chemotherapy,, Mathematical Biosciences, 101 (1990), 237. doi: 10.1016/0025-5564(90)90021-P. Google Scholar

[22]

A. Swierniak, Optimal treatment protocols in leukemia - modelling the proliferation cycle,, Proceedings of the 12th IMACS World Congress, 4 (1988), 170. Google Scholar

[23]

A. Swierniak, Some control problems for simplest models of proliferation cycle,, Applied mathematics and Computer Science, 4 (1994), 223. Google Scholar

[24]

A. Swierniak, Cell cycle as an object of control,, J. of Biological Systems, 3 (1995), 41. doi: 10.1142/S0218339095000058. Google Scholar

[25]

A. Swierniak, Direct and indirect control of cancer populations,, Bulletin of the Polish Academy of Sciences, 56 (2008), 367. Google Scholar

[26]

A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy,, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357. Google Scholar

[27]

A. Swierniak, A. Polanski and M. Kimmel, Optimal control problems arising in cell-cycle-specific cancer chemotherapy,, Cell Proliferation, 29 (1996), 117. Google Scholar

[28]

A. Swierniak, A. Polanski, M. Kimmel, A. Bobrowski and J. Smieja, Qualitative analysis of controlled drug resistance model - inverse Laplace and semigroup approach,, Control and Cybernetics, 28 (1999), 61. Google Scholar

[29]

A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance,, Nonlinear Analysis, 47 (2000), 375. doi: 10.1016/S0362-546X(01)00184-5. Google Scholar

[30]

S. D. Weitman, E. Glatstein and B. A. Kamen, Back to the basics: the importance of concentration $\times$ time in oncology,, J. of Clinical Oncology, 11 (1993), 820. Google Scholar

[31]

T. E. Wheldon, "Mathematical Models in Cancer Research,", Boston-Philadelphia: Hilger Publishing, (1988). Google Scholar

[1]

Divya Thakur, Belinda Marchand. Hybrid optimal control for HIV multi-drug therapies: A finite set control transcription approach. Mathematical Biosciences & Engineering, 2012, 9 (4) : 899-914. doi: 10.3934/mbe.2012.9.899

[2]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

[3]

Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014

[4]

Arturo Alvarez-Arenas, Konstantin E. Starkov, Gabriel F. Calvo, Juan Belmonte-Beitia. Ultimate dynamics and optimal control of a multi-compartment model of tumor resistance to chemotherapy. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2017-2038. doi: 10.3934/dcdsb.2019082

[5]

E. Jung, Suzanne Lenhart, Z. Feng. Optimal control of treatments in a two-strain tuberculosis model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 473-482. doi: 10.3934/dcdsb.2002.2.473

[6]

Craig Collins, K. Renee Fister, Bethany Key, Mary Williams. Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences & Engineering, 2009, 6 (3) : 451-467. doi: 10.3934/mbe.2009.6.451

[7]

Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040

[8]

Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White. Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1435-1463. doi: 10.3934/mbe.2018066

[9]

Clara Rojas, Juan Belmonte-Beitia, Víctor M. Pérez-García, Helmut Maurer. Dynamics and optimal control of chemotherapy for low grade gliomas: Insights from a mathematical model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1895-1915. doi: 10.3934/dcdsb.2016028

[10]

Shuo Wang, Heinz Schättler. Optimal control for cancer chemotherapy under tumor heterogeneity with Michealis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2383-2405. doi: 10.3934/dcdsb.2019100

[11]

Luis A. Fernández, Cecilia Pola. Optimal control problems for the Gompertz model under the Norton-Simon hypothesis in chemotherapy. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2577-2612. doi: 10.3934/dcdsb.2018266

[12]

Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control & Related Fields, 2017, 7 (2) : 235-257. doi: 10.3934/mcrf.2017008

[13]

Chunxiao Ding, Zhipeng Qiu, Huaiping Zhu. Multi-host transmission dynamics of schistosomiasis and its optimal control. Mathematical Biosciences & Engineering, 2015, 12 (5) : 983-1006. doi: 10.3934/mbe.2015.12.983

[14]

Urszula Ledzewicz, Behrooz Amini, Heinz Schättler. Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1257-1275. doi: 10.3934/mbe.2015.12.1257

[15]

Urszula Ledzewicz, Heinz Schättler, Shuo Wang. On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks & Heterogeneous Media, 2019, 14 (1) : 131-147. doi: 10.3934/nhm.2019007

[16]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[17]

Raymond Ching Man Chan, Henry Ying Kei Lau. An AIS-based optimal control framework for longevity and task achievement of multi-robot systems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 45-56. doi: 10.3934/naco.2012.2.45

[18]

Heinz Schättler, Urszula Ledzewicz. Fields of extremals and sensitivity analysis for multi-input bilinear optimal control problems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4611-4638. doi: 10.3934/dcds.2015.35.4611

[19]

Marcelo J. Villena, Mauricio Contreras. Global and local advertising strategies: A dynamic multi-market optimal control model. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1017-1048. doi: 10.3934/jimo.2018084

[20]

Wei Feng, Shuhua Hu, Xin Lu. Optimal controls for a 3-compartment model for cancer chemotherapy with quadratic objective. Conference Publications, 2003, 2003 (Special) : 544-553. doi: 10.3934/proc.2003.2003.544

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]