2013, 10(3): 861-872. doi: 10.3934/mbe.2013.10.861

A simple model of carcinogenic mutations with time delay and diffusion

1. 

Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw

2. 

College of Inter-faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland

Received  June 2012 Revised  August 2012 Published  April 2013

In the paper we consider a system of delay differential equations (DDEs) of Lotka-Volterra type with diffusion reflecting mutations from normal to malignant cells. The model essentially follows the idea of Ahangar and Lin (2003) where mutations in three different environmental conditions, namely favorable, competitive and unfavorable, were considered. We focus on the unfavorable conditions that can result from a given treatment, e.g. chemotherapy. Included delay stands for the interactions between benign and other cells. We compare the dynamics of ODEs system, the system with delay and the system with delay and diffusion. We mainly focus on the dynamics when a positive steady state exists. The system which is globally stable in the case without the delay and diffusion is destabilized by increasing delay, and therefore the underlying kinetic dynamics becomes oscillatory due to a Hopf bifurcation for appropriate values of the delay. This suggests the occurrence of spatially non-homogeneous periodic solutions for the system with the delay and diffusion.
Citation: Monika Joanna Piotrowska, Urszula Foryś, Marek Bodnar, Jan Poleszczuk. A simple model of carcinogenic mutations with time delay and diffusion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 861-872. doi: 10.3934/mbe.2013.10.861
References:
[1]

J. A. Adam and N. Bellomo, "A Survey of Models for Tumor-imune System Synamics,", Birkhäuser, (1997).   Google Scholar

[2]

R. Ahangar and X. B. Lin, Multistage evolutionary model for carcinogenesis mutations,, Electron. J. Diff. Eqns., 10 (2003), 33.   Google Scholar

[3]

P. K. Brazhnik and J. J. Tyson, On travelling wave solutions of Fisher's equation in two spatial dimensions,, SIAM J. Appl. Math., 60 (1999), 371.  doi: 10.1137/S0036139997325497.  Google Scholar

[4]

K. L. Cooke and P. van den Driessche, On zeroes of some transcendental equations,, Funkcj. Ekvacioj, 29 (1986), 77.   Google Scholar

[5]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[6]

U. Foryś, Comparison of the models for carcinogenesis mutations - one-stage case,, in, (2004), 13.   Google Scholar

[7]

U. Foryś, Time delays in one-stage models for carcinogenesis mutations,, in, (2005), 13.   Google Scholar

[8]

U. Foryś, Stability analysis and comparison of the models for carcinogenesis mutations in the case of two stages of mutations,, J. Appl. Anal., 11 (2005), 200.  doi: 10.1515/JAA.2005.283.  Google Scholar

[9]

U. Foryś, Multi-dimensional Lotka-Volterra system for carcinogenesis mutations,, Math. Meth. Appl. Sci., 32 (2009), 2287.  doi: 10.1002/mma.1137.  Google Scholar

[10]

J. K. Hale, "Theory of Functional Differential Equations,", Springer, (1977).   Google Scholar

[11]

J. D. Murray, "Mathematical Biology I: An Introduction,", Springer, (2002).   Google Scholar

[12]

J. D. Murray, "Mathematical Biology II: Spatial Models and Biomedical Applications,", Springer, (2003).   Google Scholar

[13]

A. S. Perelson and G. Weisbuch, Immunology for physicists,, Rev. Mod. Phys., 69 (1997), 1219.  doi: 10.1103/RevModPhys.69.1219.  Google Scholar

show all references

References:
[1]

J. A. Adam and N. Bellomo, "A Survey of Models for Tumor-imune System Synamics,", Birkhäuser, (1997).   Google Scholar

[2]

R. Ahangar and X. B. Lin, Multistage evolutionary model for carcinogenesis mutations,, Electron. J. Diff. Eqns., 10 (2003), 33.   Google Scholar

[3]

P. K. Brazhnik and J. J. Tyson, On travelling wave solutions of Fisher's equation in two spatial dimensions,, SIAM J. Appl. Math., 60 (1999), 371.  doi: 10.1137/S0036139997325497.  Google Scholar

[4]

K. L. Cooke and P. van den Driessche, On zeroes of some transcendental equations,, Funkcj. Ekvacioj, 29 (1986), 77.   Google Scholar

[5]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[6]

U. Foryś, Comparison of the models for carcinogenesis mutations - one-stage case,, in, (2004), 13.   Google Scholar

[7]

U. Foryś, Time delays in one-stage models for carcinogenesis mutations,, in, (2005), 13.   Google Scholar

[8]

U. Foryś, Stability analysis and comparison of the models for carcinogenesis mutations in the case of two stages of mutations,, J. Appl. Anal., 11 (2005), 200.  doi: 10.1515/JAA.2005.283.  Google Scholar

[9]

U. Foryś, Multi-dimensional Lotka-Volterra system for carcinogenesis mutations,, Math. Meth. Appl. Sci., 32 (2009), 2287.  doi: 10.1002/mma.1137.  Google Scholar

[10]

J. K. Hale, "Theory of Functional Differential Equations,", Springer, (1977).   Google Scholar

[11]

J. D. Murray, "Mathematical Biology I: An Introduction,", Springer, (2002).   Google Scholar

[12]

J. D. Murray, "Mathematical Biology II: Spatial Models and Biomedical Applications,", Springer, (2003).   Google Scholar

[13]

A. S. Perelson and G. Weisbuch, Immunology for physicists,, Rev. Mod. Phys., 69 (1997), 1219.  doi: 10.1103/RevModPhys.69.1219.  Google Scholar

[1]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[2]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[3]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[4]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[5]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[6]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[7]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[8]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[9]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[12]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[13]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[14]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[15]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[16]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[17]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[18]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[19]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[20]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (8)

[Back to Top]