2013, 10(3): 913-923. doi: 10.3934/mbe.2013.10.913

A flexible multivariable model for Phytoplankton growth

1. 

Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, United States, United States

2. 

School of Medicine, University of Alabama at Birmingham, Birmingham AL 35294, United States, United States

Received  May 2012 Revised  January 2013 Published  April 2013

We introduce a new multivariable model to be used to study the growth dynamics of phytoplankton as a function of both time and the concentration of nutrients. This model is applied to a set of experimental data which describes the rate of growth as a function of these two variables. The form of the model allows easy extension to additional variables. Thus, the model can be used to analyze experimental data regarding the effects of various factors on phytoplankton growth rate. Such a model will also be useful in analysis of the role of concentration of various nutrients or trace elements, temperature, and light intensity, or other important explanatory variables, or combinations of such variables, in analyzing phytoplankton growth dynamics.
Citation: Mohammad A. Tabatabai, Wayne M. Eby, Sejong Bae, Karan P. Singh. A flexible multivariable model for Phytoplankton growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 913-923. doi: 10.3934/mbe.2013.10.913
References:
[1]

M. E. Baird, S. M. Emsley and J. M. Meglade, Modelling the interacting effects of nutrient uptake, light capture and temperature on phytoplankton growth,, J. Plankton Research 23, 23 (2001), 840.   Google Scholar

[2]

B. Beardall, D. Allen, J. Bragg, Z. V. Finkel, K. J. Flynn, A. Quigg, T. A. V. Rees, A. Richardson and J. A. Raven, Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton,, New Phytol., 181 (2009), 295.   Google Scholar

[3]

Z. Bursac, M. Tabatabai and D. K. Williams, Non-linear hyperbolastic growth models and applications in cranofacial and stem cell growth,, in, (2006), 190.   Google Scholar

[4]

M. R. Droop, The nutrient status of algal cells in continuous culture,, J. Mar. Biol. Assoc. UK, 54 (1974), 825.   Google Scholar

[5]

P. Duarte, M. F. Macedo and L. C. da Fonseca, The relationship between phytoplankton diversity and community function in a coastal lagoon,, Hydrobiologia, 555 (2006), 3.   Google Scholar

[6]

W. Eby, M. Tabatabai and Z. Bursac, Hyperbolastic modeling of tumor growth with a combined treatment of iodoacetate and dimethylsulfoxide,, BMC Cancer, 10 (2010).  doi: 10.1186/1471-2407-10-509.  Google Scholar

[7]

G. T. Evans and M. A. Paranjape, Precision of estimates of phytoplankton growth and microzooplankton grazing when the functional response of grazers may be nonlinear,, Mar. Ecol. Prog. Ser., 80 (1992), 285.   Google Scholar

[8]

K. J. Flynn, A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton,, J. Plankton Research, 23 (2001), 977.   Google Scholar

[9]

K. Gao, Y. Wu, G. Li, H. Wu, V. E. Villafañe and E. W. Helbling, Solar UV radiation drives CO2 fixation in marine phytoplankton: A double-edged sword., Plant Physiol, 144 (2007), 54.   Google Scholar

[10]

R. J. Greider, The relationship between steady state phytoplankton growth and photosynthesis,, Limnol. Oceanogr., 35 (1990), 971.   Google Scholar

[11]

T-Y. Ho, A. Quigg, Z. V. Finkel, A. J. Milligan, K. Wyman, P. G. Falkowski and F. M. M. Morel, The elemental composition of some marine phytoplankton,, J. Phycol., 39 (2003), 1145.   Google Scholar

[12]

D. A. Kiefer and J. J. Cullen, Phytoplankton growth and light absorption as regulated by light, temperature, and nutrients,, J. Plankton Research, 10 (1991), 163.   Google Scholar

[13]

T. Kmeṫ, M. Straškraba and P. Mauersberger, A mechanistic model of the adaptation of phytoplankton photosynthesis,, Bull. Math. Biol., 55 (1993), 259.   Google Scholar

[14]

L. Mailleret, J-L. Gouzé and O. Bernard, Nonlinear control for algae growth models in the chemostat,, Bioprocess Biosyst. Eng., 27 (2005), 319.   Google Scholar

[15]

Z-P. Mei, Z. V. Finkel and A. J. Irwin, Light and nutrient availability affect the size-scaling of growth in phytoplankton,, J. Theor. Biol., 259 (2009), 582.   Google Scholar

[16]

J. Monod, La technique de culture continue: Théorie et applications,, Annales de l'Inst. Pasteur, 79 (1950), 390.   Google Scholar

[17]

R. K. Nagle and E. B. Saff, "Fundamentals of Differential Equations,", Fourth Edition. Addison Wesley Publishing Company, (1996).   Google Scholar

[18]

C. Pahl-Wost and D. M. Imboden, DYPHORA-a dynamic model for the rate of photosynthesis of algae,, J. Plankton Res., 12 (1990), 1207.   Google Scholar

[19]

D. L. Roelke, P. M. Eldridge and L. A. Cifuentes, A model of phytoplankton competition for limiting and nonlimiting nutrients: Implications for development of estuarine and near shore management schemes,, Estuaries, 22 (1999), 92.   Google Scholar

[20]

K. A. Safi and J. M. Gibbs, Importance of different size classes of phytoplankton in Beatrix Bay, Marlborough Sounds, New Zealand, and the potential implications for aquaculture of mussel, Prena canaliculus,, New Zealand Journal of Marine and Freshwater Research, 37 (2003), 267.   Google Scholar

[21]

E. Sakshang, K. Andresen and D. A. Kiefer, A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costatum,, Limnol. Oceanogr., 34 (1989), 198.   Google Scholar

[22]

W. V. Sobczak, J. E. Cloern, A. D. Jassby and A. B. Müller-Solger, Bioavailability of organic matter in a highly disturbed estuary: The role of detrital and algal resources,, PNAS, 99 (2002), 8101.   Google Scholar

[23]

M. Tabatabai, Z. Bursac, W. Eby and K. Singh, Mathematical modeling of stem cell proliferation,, Med. & Biol. Eng. & Comp., 49 (2011), 253.  doi: 10.1007/s11517-010-0686-y.  Google Scholar

[24]

M. Tabatabai, W. Eby and K. P. Singh, Hyperbolastic modeling of wound healing,, Mathematical and Computer Modelling, 53 (2011), 755.  doi: 10.1016/j.mcm.2010.10.013.  Google Scholar

[25]

M. Tabatabai, D. K. Williams and Z. Bursac, Hyperbolastic growth models: Theory and application,, Theoretical Biology and Medical Modeling, 2 (2005), 1.   Google Scholar

[26]

M. Takahashi, J. Ishizaka, T. Ishimaru, L. P. Atkinson, T. N. Lee, Y. Yamaguchi, Y. Fujita and S. Ichimura, Temporal change in nutrient concentrations and phytoplankton biomass in short time scale local upwelling around the Izu Peninsula,, Japan. J. Plankton Res., 8 (1986), 1039.   Google Scholar

[27]

S. C. Wofsy, A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters,, Limnology and Oceanography, 28 (1983), 1144.   Google Scholar

show all references

References:
[1]

M. E. Baird, S. M. Emsley and J. M. Meglade, Modelling the interacting effects of nutrient uptake, light capture and temperature on phytoplankton growth,, J. Plankton Research 23, 23 (2001), 840.   Google Scholar

[2]

B. Beardall, D. Allen, J. Bragg, Z. V. Finkel, K. J. Flynn, A. Quigg, T. A. V. Rees, A. Richardson and J. A. Raven, Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton,, New Phytol., 181 (2009), 295.   Google Scholar

[3]

Z. Bursac, M. Tabatabai and D. K. Williams, Non-linear hyperbolastic growth models and applications in cranofacial and stem cell growth,, in, (2006), 190.   Google Scholar

[4]

M. R. Droop, The nutrient status of algal cells in continuous culture,, J. Mar. Biol. Assoc. UK, 54 (1974), 825.   Google Scholar

[5]

P. Duarte, M. F. Macedo and L. C. da Fonseca, The relationship between phytoplankton diversity and community function in a coastal lagoon,, Hydrobiologia, 555 (2006), 3.   Google Scholar

[6]

W. Eby, M. Tabatabai and Z. Bursac, Hyperbolastic modeling of tumor growth with a combined treatment of iodoacetate and dimethylsulfoxide,, BMC Cancer, 10 (2010).  doi: 10.1186/1471-2407-10-509.  Google Scholar

[7]

G. T. Evans and M. A. Paranjape, Precision of estimates of phytoplankton growth and microzooplankton grazing when the functional response of grazers may be nonlinear,, Mar. Ecol. Prog. Ser., 80 (1992), 285.   Google Scholar

[8]

K. J. Flynn, A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton,, J. Plankton Research, 23 (2001), 977.   Google Scholar

[9]

K. Gao, Y. Wu, G. Li, H. Wu, V. E. Villafañe and E. W. Helbling, Solar UV radiation drives CO2 fixation in marine phytoplankton: A double-edged sword., Plant Physiol, 144 (2007), 54.   Google Scholar

[10]

R. J. Greider, The relationship between steady state phytoplankton growth and photosynthesis,, Limnol. Oceanogr., 35 (1990), 971.   Google Scholar

[11]

T-Y. Ho, A. Quigg, Z. V. Finkel, A. J. Milligan, K. Wyman, P. G. Falkowski and F. M. M. Morel, The elemental composition of some marine phytoplankton,, J. Phycol., 39 (2003), 1145.   Google Scholar

[12]

D. A. Kiefer and J. J. Cullen, Phytoplankton growth and light absorption as regulated by light, temperature, and nutrients,, J. Plankton Research, 10 (1991), 163.   Google Scholar

[13]

T. Kmeṫ, M. Straškraba and P. Mauersberger, A mechanistic model of the adaptation of phytoplankton photosynthesis,, Bull. Math. Biol., 55 (1993), 259.   Google Scholar

[14]

L. Mailleret, J-L. Gouzé and O. Bernard, Nonlinear control for algae growth models in the chemostat,, Bioprocess Biosyst. Eng., 27 (2005), 319.   Google Scholar

[15]

Z-P. Mei, Z. V. Finkel and A. J. Irwin, Light and nutrient availability affect the size-scaling of growth in phytoplankton,, J. Theor. Biol., 259 (2009), 582.   Google Scholar

[16]

J. Monod, La technique de culture continue: Théorie et applications,, Annales de l'Inst. Pasteur, 79 (1950), 390.   Google Scholar

[17]

R. K. Nagle and E. B. Saff, "Fundamentals of Differential Equations,", Fourth Edition. Addison Wesley Publishing Company, (1996).   Google Scholar

[18]

C. Pahl-Wost and D. M. Imboden, DYPHORA-a dynamic model for the rate of photosynthesis of algae,, J. Plankton Res., 12 (1990), 1207.   Google Scholar

[19]

D. L. Roelke, P. M. Eldridge and L. A. Cifuentes, A model of phytoplankton competition for limiting and nonlimiting nutrients: Implications for development of estuarine and near shore management schemes,, Estuaries, 22 (1999), 92.   Google Scholar

[20]

K. A. Safi and J. M. Gibbs, Importance of different size classes of phytoplankton in Beatrix Bay, Marlborough Sounds, New Zealand, and the potential implications for aquaculture of mussel, Prena canaliculus,, New Zealand Journal of Marine and Freshwater Research, 37 (2003), 267.   Google Scholar

[21]

E. Sakshang, K. Andresen and D. A. Kiefer, A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costatum,, Limnol. Oceanogr., 34 (1989), 198.   Google Scholar

[22]

W. V. Sobczak, J. E. Cloern, A. D. Jassby and A. B. Müller-Solger, Bioavailability of organic matter in a highly disturbed estuary: The role of detrital and algal resources,, PNAS, 99 (2002), 8101.   Google Scholar

[23]

M. Tabatabai, Z. Bursac, W. Eby and K. Singh, Mathematical modeling of stem cell proliferation,, Med. & Biol. Eng. & Comp., 49 (2011), 253.  doi: 10.1007/s11517-010-0686-y.  Google Scholar

[24]

M. Tabatabai, W. Eby and K. P. Singh, Hyperbolastic modeling of wound healing,, Mathematical and Computer Modelling, 53 (2011), 755.  doi: 10.1016/j.mcm.2010.10.013.  Google Scholar

[25]

M. Tabatabai, D. K. Williams and Z. Bursac, Hyperbolastic growth models: Theory and application,, Theoretical Biology and Medical Modeling, 2 (2005), 1.   Google Scholar

[26]

M. Takahashi, J. Ishizaka, T. Ishimaru, L. P. Atkinson, T. N. Lee, Y. Yamaguchi, Y. Fujita and S. Ichimura, Temporal change in nutrient concentrations and phytoplankton biomass in short time scale local upwelling around the Izu Peninsula,, Japan. J. Plankton Res., 8 (1986), 1039.   Google Scholar

[27]

S. C. Wofsy, A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters,, Limnology and Oceanography, 28 (1983), 1144.   Google Scholar

[1]

Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020359

[2]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[3]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[4]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[5]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020361

[6]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[7]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[8]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[9]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[10]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

[11]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[12]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[13]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[14]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[15]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[16]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[17]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[18]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[19]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[20]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (3)

[Back to Top]