Citation: |
[1] |
J. C. Bell, Oncolytic viruses: What's next?, Curr. Cancer Drug Targets, 7 (2007), 127-131. |
[2] |
J. C. Bell, B. Lichty and D. Stojdl, Getting oncolytic virus therapies off the ground, Cancer Cell, 4 (2003), 7-11. |
[3] |
A. M. Crompton and D. H. Kirn, From ONYX-015 to armed vaccinia viruses: The education and evolution of oncolytic virus development, Curr. Cancer Drug Targets, 7 (2007), 133-139. |
[4] |
J. J. Davis and B. Fang, Oncolytic virotherapy for cancer treatment: Challenges and solutions, J. Gene. Med., 7 (2005), 1380-1389. |
[5] |
J. M. Kaplan, Adenovirus-based cancer gene therapy, Curr. Gene Ther., 5 (2005), 595-605. |
[6] |
E. Kelly and S. J. Russell, History of oncolytic viruses: Genesis to genetic engineering, Mol. Ther., 15 (2007), 651-659. |
[7] |
D. H. Kirn and F. McCormick, Replicating viruses as selective cancer therapeutics, Mol. Med. Today, 2 (1996), 519-527. |
[8] |
F. McCormick, Cancer-specific viruses and the development of ONYX-015, Cancer Biol. Ther., 2 (2003), S157-60. |
[9] |
F. McCormick, Future prospects for oncolytic therapy, Oncogene, 24 (2005), 7817-7819. |
[10] |
C. C. O'Shea, Viruses - seeking and destroying the tumor program, Oncogene, 24 (2005), 7640-7655. |
[11] |
K. A. Parato, et. al., Recent progress in the battle between oncolytic viruses and tumours, Nat. Rev. Cancer, 5 (2005), 965-976. |
[12] |
D. E. Post, et. al., Cancer scene investigation: how a cold virus became a tumor killer, Future Oncol., 1 (2005), 247-258. |
[13] |
M. S. Roberts, et. al., Naturally oncolytic viruses, Curr. Opin. Mol. Ther., 8 (2006), 314-321.doi: 10.1080/08898480600950473. |
[14] |
M. J. Vaha-Koskela, J. E. Heikkila and A. E. Hinkkanen, Oncolytic viruses in cancer therapy, Cancer Lett., (2007). |
[15] |
H. H. Wong, N. R. Lemoine and Y. Wang, Oncolytic viruses for cancer therapy: Overcoming the obstacles, Viruses, 2 (2010), 78-106. |
[16] |
D. Koppers-Lalic and R. C. Hoeben, Non-human viruses developed as therapeutic agent for use in humans, Rev. Med. Virol, 21 (2011), 227-239. |
[17] |
R. L. Martuza, et. al., Experimental therapy of human glioma by means of a genetically engineered virus mutant, Science, 252 (1991), 854-856. |
[18] |
K. Garber, China approves world's first oncolytic virus therapy for cancer treatment, J. Natl. Cancer Inst., 98 (2006), 298-300. |
[19] |
R. M. Eager and J. Nemunaitis, Clinical development directions in oncolytic viral therapy, Cancer Gene. Ther., 18 (2011), 305-317. |
[20] |
D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission, Cancer Res., 61 (2001), 3501-3507. |
[21] |
D. Wodarz, Gene therapy for killing p53-negative cancer cells: Use of replicating versus nonreplicating agents, Hum. Gene. Ther., 14 (2003), 153-159. |
[22] |
Z. Bajzer, et. al., Modeling of cancer virotherapy with recombinant measles viruses, J. Theor. Biol., 252 (2008), 109-122.doi: 10.1016/j.jtbi.2008.01.016. |
[23] |
M. Biesecker, et. al., Optimization of virotherapy for cancer, Bull. Math. Biol., 72 (2010), 469-489.doi: 10.1007/s11538-009-9456-0. |
[24] |
D. Dingli, et. al., Mathematical modeling of cancer radiovirotherapy, Math. Biosci., 199 (2006), 55-78.doi: 10.1016/j.mbs.2005.11.001. |
[25] |
D. Dingli, et. al., Dynamics of multiple myeloma tumor therapy with a recombinant measles virus, Cancer Gene Ther., 16 (2009), 873-882. |
[26] |
A. Friedman, et. al., Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity, Cancer Res., 66 (2006), 2314-2319. |
[27] |
G. P. Karev, A. S. Novozhilov and E. V. Koonin, Mathematical modeling of tumor therapy with oncolytic viruses: effects of parametric heterogeneity on cell dynamics, Biol. Direct, 1 (2006), pp. 30. |
[28] |
N. L. Komarova and D. Wodarz, ODE models for oncolytic virus dynamics, J. Theor. Biol., 263 (2010), 530-543.doi: 10.1016/j.jtbi.2010.01.009. |
[29] |
A. S. Novozhilov, et. al., Mathematical modeling of tumor therapy with oncolytic viruses: Regimes with complete tumor elimination within the framework of deterministic models, Biol. Direct, 1 (2006), pp. 6. |
[30] |
L. M. Wein, J. T. Wu and D. H. Kirn, Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: Implications for virus design and delivery, Cancer Res., 63 (2003), 1317-1324. |
[31] |
D. Wodarz, Computational approaches to study oncolytic virus therapy: Insights and challenges, Gene Therapy and Molecular Biology, 8 (2004), 137-146. |
[32] |
D. Wodarz, Use of oncolytic viruses for the eradication of drug-resistant cancer cells, J. R. Soc. Interface, 6 (2009), 179-186. |
[33] |
D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: Basis for experimental validation and model selection, PLoS ONE, 4 (2009), e4271. |
[34] |
N. Bagheri, et. al., A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition, PLoS Comput. Biol., 7 (2011), e1001085. |
[35] |
R. Zurakowski and D. Wodarz, Model-driven approaches for in vitro combination therapy using ONYX-015 replicating oncolytic adenovirus, J. Theor. Biol., 245 (2007), 1-8.doi: 10.1016/j.jtbi.2006.09.029. |
[36] |
W. Mok, et. al., Mathematical modeling of herpes simplex virus distribution in solid tumors: Implications for cancer gene therapy, Clin. Cancer Res., 15 (2009), 2352-2360. |
[37] |
L. R. Paiva, et. al., A multiscale mathematical model for oncolytic virotherapy, Cancer Res., 69 (2009), 1205-1211. |
[38] |
C. L. Reis, et. al., In silico evolutionary dynamics of tumour virotherapy, Integr. Biol. (Camb), 2 (2010), 41-45. |
[39] |
L. You, C. T. Yang and D. M. Jablons, ONYX-015 works synergistically with chemotherapy in lung cancer cell lines and primary cultures freshly made from lung cancer patients, Cancer Res., 60 (2000), 1009-1013. |
[40] |
A. Chahlavi, et. al., Replication-competent herpes simplex virus vector G207 and cisplatin combination therapy for head and neck squamous cell carcinoma, Neoplasia, 1 (1999), 162-169. |
[41] |
I. A. Rodriguez-Brenes, N. L. Komarova and D. Wodarz, Evolutionary dynamics of feedback escape and the development of stem-cell-driven cancers, Proc. Natl. Acad. Sci. U S A, 108 (2011), 18983-18988. |
[42] |
D. Wodarz, et. al., Complex spatial dynamics of oncolytic viruses in vitro: Mathematical and experimental approaches, PLoS Comput. Biol., 8 (2012), e1002547. |
[43] |
K. Sato, H. Matsuda and A. Sasaki, Pathogen invasion and host extinction in lattice structured populations, Journal of Mathematical Biology, 32 (1994), 251-268. |
[44] |
A. M. Deroos, E. Mccauley and W. G. Wilson, Mobility versus density-limited predator prey dynamics on different spatial scales, Proceedings of the Royal Society of London Series B-Biological Sciences, 246 (1991), 117-122. |
[45] |
M. Pascual, P. Mazzega and S. A. Levin, Oscillatory dynamics and spatial scale: The role of noise and unresolved pattern, Ecology, 82 (2001), 2357-2369. |
[46] |
R. M. Anderson and R. M. May, "Infectious Diseases of Humans," 1991, Oxford, England: Oxford University Press. |
[47] |
M. A. Nowak and R. M. May, "Virus Dynamics. Mathematical Principles of Immunology and Virology," 2000: Oxford University Press. |
[48] |
M. P. Hassell, "The Spatial and Temporal Dynamics of Host-Parasitoid Interactions," 2000, Oxford: Oxford University Press. |