2013, 10(4): 979-996. doi: 10.3934/mbe.2013.10.979

Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

Received  February 2013 Revised  April 2013 Published  June 2013

A diffusive predator-prey model with Holling type II functional response and the no-flux boundary condition incorporating a constant prey refuge is considered. Globally asymptotically stability of the positive equilibrium is obtained. Regarding the constant number of prey refuge $m$ as a bifurcation parameter, by analyzing the distribution of the eigenvalues, the existence of Hopf bifurcation is given. Employing the center manifold theory and normal form method, an algorithm for determining the properties of the Hopf bifurcation is derived. Some numerical simulations for illustrating the analysis results are carried out.
Citation: Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979
References:
[1]

L. Chen, F. Chen and L. Chen, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge,, Nonlinear Anal-Real, 11 (2010), 246.  doi: 10.1016/j.nonrwa.2008.10.056.  Google Scholar

[2]

J. Collings, Bifurcation and stability analysis of a temperature-depent mite predator-prey interaction model incroporating a prey refuge,, Bull. Math. Biol., 57 (1995), 63.   Google Scholar

[3]

Y. Du and S.-B. Hsu, A diffusive predator-prey model in heterogeneous environment,, J. Differ. Equations, 203 (2004), 331.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[4]

Y. Du and Y. Lou, Qualitative behaviour of positive solutions of a predator-prey model: Effects of saturation,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321.  doi: 10.1017/S0308210500000895.  Google Scholar

[5]

Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model,, Trans. Amer. Math. Soc., 349 (1997), 2443.  doi: 10.1090/S0002-9947-97-01842-4.  Google Scholar

[6]

Y. Du and J. Shi, A diffusive predator-prey model with a protection zone,, J. Differ. Equations, 229 (2006), 63.  doi: 10.1016/j.jde.2006.01.013.  Google Scholar

[7]

Y. Du and J. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment,, Nonlinear Dynamics and Evolution Equations, 48 (2006), 95.   Google Scholar

[8]

E. Gonzalez-Olivares and R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: More prey, fewer predators and enhanced stability,, Ecol. Model., 166 (2003), 135.  doi: 10.1016/S0304-3800(03)00131-5.  Google Scholar

[9]

X. Guan, W. Wang and Y. Cai, Spatiotemporal dynamics of a Lieslie-Gower predator-prey model incorporating a prey refuge,, Nonlinear Anal-Real, 12 (2011), 2385.  doi: 10.1016/j.nonrwa.2011.02.011.  Google Scholar

[10]

B. Hassard, N. Kazarinoff and Y-H. Wan, "Theory and Applications of Hopf Bifurcation,", Cambridge University Press, (1981).   Google Scholar

[11]

M. Hassel, "The Dynamics of Arthropod Predator-Prey Systems,", Princeton University Press, (1978).   Google Scholar

[12]

M. Hassel and R. May, Stability in insect host-parasite models,, J. Anim. Ecol., 42 (1973), 693.  doi: 10.2307/3133.  Google Scholar

[13]

R. Holt, Optimal foraging and the form of the predator isoclin,, Am. Nat., 122 (1983), 521.  doi: 10.1086/284153.  Google Scholar

[14]

S.-B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology,, Taiwan. J. Math., 9 (2005), 151.   Google Scholar

[15]

S.-B. Hsu, T.-W. Huang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system,, J. Math. Biol., 42 (2001), 489.  doi: 10.1007/s002850100079.  Google Scholar

[16]

Y. Huang, F. Chen and L. Zhong, Stability analysis of a predator-prey model with Holling type III response function incorporating a prey refuge,, Appl. Math. Comput., 182 (2006), 672.  doi: 10.1016/j.amc.2006.04.030.  Google Scholar

[17]

G. Hutchinson, "The Ecological Theater and the Evolutionary Play,", Yale Univ. Press, (1976).   Google Scholar

[18]

T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge,, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 681.  doi: 10.1016/j.cnsns.2003.08.006.  Google Scholar

[19]

W. Ko and K. Ryu, A qualitative on general Gause-type predator-prey models with non-monotonic functional response,, Nonlinear Anal-Real, 10 (2009), 2558.  doi: 10.1016/j.nonrwa.2008.05.012.  Google Scholar

[20]

W. Ko and K. Ryu, Qualitative analysis of a prey-predator model with Holling type II functional response incorporating a prey refuge,, J. Differ. Equations, 231 (2006), 534.  doi: 10.1016/j.jde.2006.08.001.  Google Scholar

[21]

V. Krivan, Effects of optimal antipredator behavior of prey on predator-prey dynamics: The role of refuges,, Theor. Popul. Biol., 53 (1998), 131.   Google Scholar

[22]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system,, J. Math. Biol., 36 (1998), 389.  doi: 10.1007/s002850050105.  Google Scholar

[23]

Y. Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems,, J. Math. Biol., 88 (1988), 67.  doi: 10.1016/0025-5564(88)90049-1.  Google Scholar

[24]

Y. Li and M. Wang, Stationary pattern of a diffusive prey-predator model with trophic intersections of three levels,, Nonlinear Anal.-Real, 14 (2013), 1806.  doi: 10.1016/j.nonrwa.2012.11.012.  Google Scholar

[25]

X. Liu and Y. Lou, Global dynamics of a predator-prey model,, J. Math. Anal. Appl., 371 (2010), 323.  doi: 10.1016/j.jmaa.2010.05.037.  Google Scholar

[26]

Z. Ma, W. Li, Y. Zhao, W. Wang, H. Zhang and Z. Li, Effects of prey refuges on a predator-prey model with a class of functional responses: The role of refuges,, Math. Biosci., 218 (2009), 73.  doi: 10.1016/j.mbs.2008.12.008.  Google Scholar

[27]

R. May, "Stability and Complexity in Model Ecosystems,", Princeton University Press, (1974).   Google Scholar

[28]

J. M. McNair, The effects of refuges on predator-prey ineractions: A reconsideration,, Theor. Popul. Biol., 29 (1986), 38.  doi: 10.1016/0040-5809(86)90004-3.  Google Scholar

[29]

P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model,, J. Differ. Equations, 200 (2004), 245.  doi: 10.1016/j.jde.2004.01.004.  Google Scholar

[30]

R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case,, J. Differ. Equations, 247 (2009), 866.  doi: 10.1016/j.jde.2009.03.008.  Google Scholar

[31]

R. Peng and M. Wang, Positive steady states of the Holling-Tanner prey-predator model with diffusion,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 149.  doi: 10.1017/S0308210500003814.  Google Scholar

[32]

G. D. Ruxton, Short term refuge use and stability of predator-prey models,, Theor. Popul. Biol., 47 (1995), 1.  doi: 10.1006/tpbi.1995.1001.  Google Scholar

[33]

M. Scheffer and R. J. De Boer., Implications of spatial heterogeneity for the paradox of enrichment,, Ecology, 76 (1995), 2270.  doi: 10.2307/1941701.  Google Scholar

[34]

A. Sih, Prey refuges and predator-prey stability,, Theor. Popul. Biol., 31 (1987), 1.  doi: 10.1016/0040-5809(87)90019-0.  Google Scholar

[35]

L. Smith, "Models in Ecology,", Cambridge University Press, (1974).   Google Scholar

[36]

R. J. Taylor, "Predation,", Chapman $&$ Hall, (1984).   Google Scholar

[37]

J. Wang, J. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey,, J. Differ. Equations, 251 (2011), 1276.  doi: 10.1016/j.jde.2011.03.004.  Google Scholar

[38]

J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey,, J. Math. Biol., 62 (2011), 291.  doi: 10.1007/s00285-010-0332-1.  Google Scholar

[39]

D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system,, J. Math. Biol., 43 (2001), 268.  doi: 10.1007/s002850100097.  Google Scholar

[40]

F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,, J. Differ. Equations, 246 (2009), 1944.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

show all references

References:
[1]

L. Chen, F. Chen and L. Chen, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge,, Nonlinear Anal-Real, 11 (2010), 246.  doi: 10.1016/j.nonrwa.2008.10.056.  Google Scholar

[2]

J. Collings, Bifurcation and stability analysis of a temperature-depent mite predator-prey interaction model incroporating a prey refuge,, Bull. Math. Biol., 57 (1995), 63.   Google Scholar

[3]

Y. Du and S.-B. Hsu, A diffusive predator-prey model in heterogeneous environment,, J. Differ. Equations, 203 (2004), 331.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[4]

Y. Du and Y. Lou, Qualitative behaviour of positive solutions of a predator-prey model: Effects of saturation,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321.  doi: 10.1017/S0308210500000895.  Google Scholar

[5]

Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model,, Trans. Amer. Math. Soc., 349 (1997), 2443.  doi: 10.1090/S0002-9947-97-01842-4.  Google Scholar

[6]

Y. Du and J. Shi, A diffusive predator-prey model with a protection zone,, J. Differ. Equations, 229 (2006), 63.  doi: 10.1016/j.jde.2006.01.013.  Google Scholar

[7]

Y. Du and J. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment,, Nonlinear Dynamics and Evolution Equations, 48 (2006), 95.   Google Scholar

[8]

E. Gonzalez-Olivares and R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: More prey, fewer predators and enhanced stability,, Ecol. Model., 166 (2003), 135.  doi: 10.1016/S0304-3800(03)00131-5.  Google Scholar

[9]

X. Guan, W. Wang and Y. Cai, Spatiotemporal dynamics of a Lieslie-Gower predator-prey model incorporating a prey refuge,, Nonlinear Anal-Real, 12 (2011), 2385.  doi: 10.1016/j.nonrwa.2011.02.011.  Google Scholar

[10]

B. Hassard, N. Kazarinoff and Y-H. Wan, "Theory and Applications of Hopf Bifurcation,", Cambridge University Press, (1981).   Google Scholar

[11]

M. Hassel, "The Dynamics of Arthropod Predator-Prey Systems,", Princeton University Press, (1978).   Google Scholar

[12]

M. Hassel and R. May, Stability in insect host-parasite models,, J. Anim. Ecol., 42 (1973), 693.  doi: 10.2307/3133.  Google Scholar

[13]

R. Holt, Optimal foraging and the form of the predator isoclin,, Am. Nat., 122 (1983), 521.  doi: 10.1086/284153.  Google Scholar

[14]

S.-B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology,, Taiwan. J. Math., 9 (2005), 151.   Google Scholar

[15]

S.-B. Hsu, T.-W. Huang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system,, J. Math. Biol., 42 (2001), 489.  doi: 10.1007/s002850100079.  Google Scholar

[16]

Y. Huang, F. Chen and L. Zhong, Stability analysis of a predator-prey model with Holling type III response function incorporating a prey refuge,, Appl. Math. Comput., 182 (2006), 672.  doi: 10.1016/j.amc.2006.04.030.  Google Scholar

[17]

G. Hutchinson, "The Ecological Theater and the Evolutionary Play,", Yale Univ. Press, (1976).   Google Scholar

[18]

T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge,, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 681.  doi: 10.1016/j.cnsns.2003.08.006.  Google Scholar

[19]

W. Ko and K. Ryu, A qualitative on general Gause-type predator-prey models with non-monotonic functional response,, Nonlinear Anal-Real, 10 (2009), 2558.  doi: 10.1016/j.nonrwa.2008.05.012.  Google Scholar

[20]

W. Ko and K. Ryu, Qualitative analysis of a prey-predator model with Holling type II functional response incorporating a prey refuge,, J. Differ. Equations, 231 (2006), 534.  doi: 10.1016/j.jde.2006.08.001.  Google Scholar

[21]

V. Krivan, Effects of optimal antipredator behavior of prey on predator-prey dynamics: The role of refuges,, Theor. Popul. Biol., 53 (1998), 131.   Google Scholar

[22]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system,, J. Math. Biol., 36 (1998), 389.  doi: 10.1007/s002850050105.  Google Scholar

[23]

Y. Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems,, J. Math. Biol., 88 (1988), 67.  doi: 10.1016/0025-5564(88)90049-1.  Google Scholar

[24]

Y. Li and M. Wang, Stationary pattern of a diffusive prey-predator model with trophic intersections of three levels,, Nonlinear Anal.-Real, 14 (2013), 1806.  doi: 10.1016/j.nonrwa.2012.11.012.  Google Scholar

[25]

X. Liu and Y. Lou, Global dynamics of a predator-prey model,, J. Math. Anal. Appl., 371 (2010), 323.  doi: 10.1016/j.jmaa.2010.05.037.  Google Scholar

[26]

Z. Ma, W. Li, Y. Zhao, W. Wang, H. Zhang and Z. Li, Effects of prey refuges on a predator-prey model with a class of functional responses: The role of refuges,, Math. Biosci., 218 (2009), 73.  doi: 10.1016/j.mbs.2008.12.008.  Google Scholar

[27]

R. May, "Stability and Complexity in Model Ecosystems,", Princeton University Press, (1974).   Google Scholar

[28]

J. M. McNair, The effects of refuges on predator-prey ineractions: A reconsideration,, Theor. Popul. Biol., 29 (1986), 38.  doi: 10.1016/0040-5809(86)90004-3.  Google Scholar

[29]

P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model,, J. Differ. Equations, 200 (2004), 245.  doi: 10.1016/j.jde.2004.01.004.  Google Scholar

[30]

R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case,, J. Differ. Equations, 247 (2009), 866.  doi: 10.1016/j.jde.2009.03.008.  Google Scholar

[31]

R. Peng and M. Wang, Positive steady states of the Holling-Tanner prey-predator model with diffusion,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 149.  doi: 10.1017/S0308210500003814.  Google Scholar

[32]

G. D. Ruxton, Short term refuge use and stability of predator-prey models,, Theor. Popul. Biol., 47 (1995), 1.  doi: 10.1006/tpbi.1995.1001.  Google Scholar

[33]

M. Scheffer and R. J. De Boer., Implications of spatial heterogeneity for the paradox of enrichment,, Ecology, 76 (1995), 2270.  doi: 10.2307/1941701.  Google Scholar

[34]

A. Sih, Prey refuges and predator-prey stability,, Theor. Popul. Biol., 31 (1987), 1.  doi: 10.1016/0040-5809(87)90019-0.  Google Scholar

[35]

L. Smith, "Models in Ecology,", Cambridge University Press, (1974).   Google Scholar

[36]

R. J. Taylor, "Predation,", Chapman $&$ Hall, (1984).   Google Scholar

[37]

J. Wang, J. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey,, J. Differ. Equations, 251 (2011), 1276.  doi: 10.1016/j.jde.2011.03.004.  Google Scholar

[38]

J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey,, J. Math. Biol., 62 (2011), 291.  doi: 10.1007/s00285-010-0332-1.  Google Scholar

[39]

D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system,, J. Math. Biol., 43 (2001), 268.  doi: 10.1007/s002850100097.  Google Scholar

[40]

F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,, J. Differ. Equations, 246 (2009), 1944.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

[1]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[2]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[3]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[4]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[9]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]