2014, 11(1): 1-10. doi: 10.3934/mbe.2014.11.1

A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model

1. 

Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Via Cintia, Napoli, Italy, Italy, Italy

2. 

Istituto per le Appplicazioni del Calcolo "Mauro Picone", Consiglio Nazionale delle Ricerche, Via Pietro Castellino, Napoli, Italy

Received  December 2012 Revised  May 2013 Published  September 2013

A method to generate first passage times for a class of stochastic processes is proposed. It does not require construction of the trajectories as usually needed in simulation studies, but is based on an integral equation whose unknown quantity is the probability density function of the studied first passage times and on the application of the hazard rate method. The proposed procedure is particularly efficient in the case of the Ornstein-Uhlenbeck process, which is important for modeling spiking neuronal activity.
Citation: Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (1) : 1-10. doi: 10.3934/mbe.2014.11.1
References:
[1]

A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities,, Advances in Applied Probability, 19 (1987), 784.  doi: 10.2307/1427102.  Google Scholar

[2]

A. N. Burkitt, A review of the integrate-and-fire neuron model. I. Homogeneous synaptic input,, Biological Cybernetics, 95 (2006), 1.  doi: 10.1007/s00422-006-0068-6.  Google Scholar

[3]

E. Di Nardo, A. G. Nobile, E. Pirozzi and L. M. Ricciardi, A computational approach to the first-passage-time problems for Gauss-Markov processes,, Advances in Applied Probability, 33 (2001), 453.  doi: 10.1239/aap/999188324.  Google Scholar

[4]

Y. Dong, S. Mihalas and E. Niebur, Improved integral equation solution for the first passage time of leaky integrate-and-fire neurons,, Neural Computation, 23 (2011), 421.  doi: 10.1162/NECO_a_00078.  Google Scholar

[5]

V. Giorno, A. G. Nobile, L. M. Ricciardi and S. Sato, On the evaluation of first-passage-time probability densities via non-singular integral equations,, Advances in Applied Probability, 21 (1989), 20.  doi: 10.2307/1427196.  Google Scholar

[6]

M. T. Giraudo and L. Sacerdote, Simulation methods in neuronal modelling,, Biosystems, 48 (1998), 77.  doi: 10.1016/S0303-2647(98)00052-5.  Google Scholar

[7]

M. T. Giraudo and L. Sacerdote, An improved technique for the simulation of first passage times for diffusion processes,, Communications in Statistics-Simulation and Computation, 28 (1999), 1135.  doi: 10.1080/03610919908813596.  Google Scholar

[8]

M. T. Giraudo, L. Sacerdote and C. Zucca, A Monte Carlo method for the simulation of first passage times of diffusion processes,, Methodology and Computing in Applied Probability, 3 (2001), 215.  doi: 10.1023/A:1012261328124.  Google Scholar

[9]

R. Gutiérrez Jáimez, P. Román Román and F. Torres Ruiz, A note on the Volterra integral equation for the first passage time probability density,, Journal of Applied Probability, 32 (1995), 635.  doi: 10.2307/3215118.  Google Scholar

[10]

P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'', Applications of Mathematics (New York), 23 (1992).   Google Scholar

[11]

P. Lánský and V. Lánská, First-passage-time problem for simulated stochastic diffusion processes,, Computers in Biology and Medicine, 24 (1994), 91.  doi: 10.1016/0010-4825(94)90068-X.  Google Scholar

[12]

P. Lánský, P. Sanda and J. He, The parameters of the stochastic leaky integrate-and-fire neuronal model,, Journal of Computational Neuroscience, 21 (2006), 211.  doi: 10.1007/s10827-006-8527-6.  Google Scholar

[13]

A. G. Nobile, L. M. Ricciardi and L. Sacerdote, Exponential trends of Ornstein-Uhlenbeck first-passage-time densities,, Journal of Applied Probability, 22 (1985), 360.  doi: 10.2307/3213779.  Google Scholar

[14]

L. M. Ricciardi, On the transformation of diffusion processes into the Wiener process,, Journal of Mathematical Analysis and Applications, 54 (1976), 185.  doi: 10.1016/0022-247X(76)90244-4.  Google Scholar

[15]

S. M. Ross, "Introduction to the Probability Models,'', Academic Press, (2007).   Google Scholar

[16]

S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex,, Neural Computation, 11 (1999), 935.  doi: 10.1162/089976699300016511.  Google Scholar

[17]

T. Taillefumier and M. O. Magnasco, A fast algorithm for the first-passage times of Gauss-Markov processes with Hölder continuous boundaries,, Journal of Statistical Physics, 140 (2010), 1130.  doi: 10.1007/s10955-010-0033-6.  Google Scholar

[18]

H. C. Tuckwell and D. K. Cope, Accuracy of neuronal interspike times calculated from a diffusion approximation,, Journal of Theoretical Biology, 83 (1980), 377.  doi: 10.1016/0022-5193(80)90045-4.  Google Scholar

[19]

H. C. Tuckwell, "Introduction to Theoretical Neurobiology. Vol. 2. Nonlinear and Stochastic Theories,", Cambridge Studies in Mathematical Biology, 8 (1988).   Google Scholar

show all references

References:
[1]

A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities,, Advances in Applied Probability, 19 (1987), 784.  doi: 10.2307/1427102.  Google Scholar

[2]

A. N. Burkitt, A review of the integrate-and-fire neuron model. I. Homogeneous synaptic input,, Biological Cybernetics, 95 (2006), 1.  doi: 10.1007/s00422-006-0068-6.  Google Scholar

[3]

E. Di Nardo, A. G. Nobile, E. Pirozzi and L. M. Ricciardi, A computational approach to the first-passage-time problems for Gauss-Markov processes,, Advances in Applied Probability, 33 (2001), 453.  doi: 10.1239/aap/999188324.  Google Scholar

[4]

Y. Dong, S. Mihalas and E. Niebur, Improved integral equation solution for the first passage time of leaky integrate-and-fire neurons,, Neural Computation, 23 (2011), 421.  doi: 10.1162/NECO_a_00078.  Google Scholar

[5]

V. Giorno, A. G. Nobile, L. M. Ricciardi and S. Sato, On the evaluation of first-passage-time probability densities via non-singular integral equations,, Advances in Applied Probability, 21 (1989), 20.  doi: 10.2307/1427196.  Google Scholar

[6]

M. T. Giraudo and L. Sacerdote, Simulation methods in neuronal modelling,, Biosystems, 48 (1998), 77.  doi: 10.1016/S0303-2647(98)00052-5.  Google Scholar

[7]

M. T. Giraudo and L. Sacerdote, An improved technique for the simulation of first passage times for diffusion processes,, Communications in Statistics-Simulation and Computation, 28 (1999), 1135.  doi: 10.1080/03610919908813596.  Google Scholar

[8]

M. T. Giraudo, L. Sacerdote and C. Zucca, A Monte Carlo method for the simulation of first passage times of diffusion processes,, Methodology and Computing in Applied Probability, 3 (2001), 215.  doi: 10.1023/A:1012261328124.  Google Scholar

[9]

R. Gutiérrez Jáimez, P. Román Román and F. Torres Ruiz, A note on the Volterra integral equation for the first passage time probability density,, Journal of Applied Probability, 32 (1995), 635.  doi: 10.2307/3215118.  Google Scholar

[10]

P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'', Applications of Mathematics (New York), 23 (1992).   Google Scholar

[11]

P. Lánský and V. Lánská, First-passage-time problem for simulated stochastic diffusion processes,, Computers in Biology and Medicine, 24 (1994), 91.  doi: 10.1016/0010-4825(94)90068-X.  Google Scholar

[12]

P. Lánský, P. Sanda and J. He, The parameters of the stochastic leaky integrate-and-fire neuronal model,, Journal of Computational Neuroscience, 21 (2006), 211.  doi: 10.1007/s10827-006-8527-6.  Google Scholar

[13]

A. G. Nobile, L. M. Ricciardi and L. Sacerdote, Exponential trends of Ornstein-Uhlenbeck first-passage-time densities,, Journal of Applied Probability, 22 (1985), 360.  doi: 10.2307/3213779.  Google Scholar

[14]

L. M. Ricciardi, On the transformation of diffusion processes into the Wiener process,, Journal of Mathematical Analysis and Applications, 54 (1976), 185.  doi: 10.1016/0022-247X(76)90244-4.  Google Scholar

[15]

S. M. Ross, "Introduction to the Probability Models,'', Academic Press, (2007).   Google Scholar

[16]

S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex,, Neural Computation, 11 (1999), 935.  doi: 10.1162/089976699300016511.  Google Scholar

[17]

T. Taillefumier and M. O. Magnasco, A fast algorithm for the first-passage times of Gauss-Markov processes with Hölder continuous boundaries,, Journal of Statistical Physics, 140 (2010), 1130.  doi: 10.1007/s10955-010-0033-6.  Google Scholar

[18]

H. C. Tuckwell and D. K. Cope, Accuracy of neuronal interspike times calculated from a diffusion approximation,, Journal of Theoretical Biology, 83 (1980), 377.  doi: 10.1016/0022-5193(80)90045-4.  Google Scholar

[19]

H. C. Tuckwell, "Introduction to Theoretical Neurobiology. Vol. 2. Nonlinear and Stochastic Theories,", Cambridge Studies in Mathematical Biology, 8 (1988).   Google Scholar

[1]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[2]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[3]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[6]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[7]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[8]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[9]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[10]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[11]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[12]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[13]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[14]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[15]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[16]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[18]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[19]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[20]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (2)

[Back to Top]