2014, 11(4): 1003-1025. doi: 10.3934/mbe.2014.11.1003

Stochastic dynamics of SIRS epidemic models with random perturbation

1. 

School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, 130024, China

2. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH

Received  February 2013 Revised  September 2013 Published  March 2014

In this paper, we consider a stochastic SIRS model with parameter perturbation, which is a standard technique in modeling population dynamics. In our model, the disease transmission coefficient and the removal rates are all affected by noise. We show that the stochastic model has a unique positive solution as is essential in any population model. Then we establish conditions for extinction or persistence of the infectious disease. When the infective part is forced to expire, the susceptible part converges weakly to an inverse-gamma distribution with explicit shape and scale parameters. In case of persistence, by new stochastic Lyapunov functions, we show the ergodic property and positive recurrence of the stochastic model. We also derive the an estimate for the mean of the stationary distribution. The analytical results are all verified by computer simulations, including examples based on experiments in laboratory populations of mice.
Citation: Qingshan Yang, Xuerong Mao. Stochastic dynamics of SIRS epidemic models with random perturbation. Mathematical Biosciences & Engineering, 2014, 11 (4) : 1003-1025. doi: 10.3934/mbe.2014.11.1003
References:
[1]

E. J. Allen, L. J. S. Allen, A. Arciniega and P. E. Greenwood, Construction of equivalent stochastic differential equation models, Stoch Anal Appl., 26 (2008), 274-297. doi: 10.1080/07362990701857129.

[2]

R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I, Nature., 280 (1979), 361-367, doi: 10.1038/280361a0. doi: 10.1038/280361a0.

[3]

N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and Its Applications, Second edition. Hafner Press [Macmillan Publishing Co., Inc.] New York, 1975.

[4]

G. K. Basak and R. N. Bhattacharya, Stability in distribution for a class of singular diffusions, Ann Probab., 20 (1992), 312-321. doi: 10.1214/aop/1176989928.

[5]

P. H. Baxendale and P. E. Greenwood, Sustained oscillations for density dependent Markov processes, J. Math. Biol., 63 (2011), 433-457. doi: 10.1007/s00285-010-0376-2.

[6]

S. Busenberg and K. Cooke, Vertically Transmitted Diseases: Models and Dynamics, Springer, Berlin, 1993. doi: 10.1007/978-3-642-75301-5.

[7]

G. Chen and T. Li, Stability of stochastic delayed SIR model, Stoch Dynam., 9 (2009), 231-252. doi: 10.1142/S0219493709002658.

[8]

Y. S. Chow, Local convergence of martingales and the law of large numbers, Ann. Math. Statist., 36 (1965), 552-558. doi: 10.1214/aoms/1177700166.

[9]

A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876-902. doi: 10.1137/10081856X.

[10]

R. Z. Hasminskii, Stochastic Stability of Differential Equations, Alphen aan den Rijn, The Netherlands, 1980.

[11]

H. W. Hethcote and D. W. Tudor, Integral equation models for endemic infectious diseases, J. Math. Biol., 9 (1980), 37-47. doi: 10.1007/BF00276034.

[12]

L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations., 217 (2005), 26-53. doi: 10.1016/j.jde.2005.06.017.

[13]

A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS and SIS epidemiological models, Appl. Math. Lett., 15 (2002), 955-960. doi: 10.1016/S0893-9659(02)00069-1.

[14]

Y. A. Kutoyants, Statistical Inference for Ergodic Diffusion Processes, Springer, London, 2004.

[15]

W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204. doi: 10.1007/BF00276956.

[16]

W. M. Liu, H. W. Hethcote and S. A. Levin, Dynamical behaviour of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380. doi: 10.1007/BF00277162.

[17]

Q. Lu, Stability of SIRS system with random perturbations, Phys. A., 388 (2009), 3677-3686. doi: 10.1016/j.physa.2009.05.036.

[18]

W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time-delay, Appl. Math. Lett., 17 (2004), 1141-1145. doi: 10.1016/j.aml.2003.11.005.

[19]

X. Mao, Stablity of Stochastic Differential Equations with Respect to Semimartingales, Longman Scientific & Technical Harlow, UK, 1991.

[20]

X. Mao, Exponentially Stability of Stochastic Differential Equations, Marcel Dekker, New York, 1994.

[21]

X. Mao, Stochastic Differential Equations and Their Applications, 2nd ed., Horwood Publishing, Chichester, 1997.

[22]

J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989. doi: 10.1007/b98869.

[23]

I. Nasell, Stochastic models of some endemic infections, Math. Biosci., 179 (2002), 1-19. doi: 10.1016/S0025-5564(02)00098-6.

[24]

E. Tornatore, S. M. Buccellato and P. Vetro, Stability of a stochastic SIR system, Phys. A., 354 (2005), 111-126. doi: 10.1016/j.physa.2005.02.057.

[25]

C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM. J. Control. Optim., 46 (2007), 1155-1179. doi: 10.1137/060649343.

show all references

References:
[1]

E. J. Allen, L. J. S. Allen, A. Arciniega and P. E. Greenwood, Construction of equivalent stochastic differential equation models, Stoch Anal Appl., 26 (2008), 274-297. doi: 10.1080/07362990701857129.

[2]

R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I, Nature., 280 (1979), 361-367, doi: 10.1038/280361a0. doi: 10.1038/280361a0.

[3]

N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and Its Applications, Second edition. Hafner Press [Macmillan Publishing Co., Inc.] New York, 1975.

[4]

G. K. Basak and R. N. Bhattacharya, Stability in distribution for a class of singular diffusions, Ann Probab., 20 (1992), 312-321. doi: 10.1214/aop/1176989928.

[5]

P. H. Baxendale and P. E. Greenwood, Sustained oscillations for density dependent Markov processes, J. Math. Biol., 63 (2011), 433-457. doi: 10.1007/s00285-010-0376-2.

[6]

S. Busenberg and K. Cooke, Vertically Transmitted Diseases: Models and Dynamics, Springer, Berlin, 1993. doi: 10.1007/978-3-642-75301-5.

[7]

G. Chen and T. Li, Stability of stochastic delayed SIR model, Stoch Dynam., 9 (2009), 231-252. doi: 10.1142/S0219493709002658.

[8]

Y. S. Chow, Local convergence of martingales and the law of large numbers, Ann. Math. Statist., 36 (1965), 552-558. doi: 10.1214/aoms/1177700166.

[9]

A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876-902. doi: 10.1137/10081856X.

[10]

R. Z. Hasminskii, Stochastic Stability of Differential Equations, Alphen aan den Rijn, The Netherlands, 1980.

[11]

H. W. Hethcote and D. W. Tudor, Integral equation models for endemic infectious diseases, J. Math. Biol., 9 (1980), 37-47. doi: 10.1007/BF00276034.

[12]

L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations., 217 (2005), 26-53. doi: 10.1016/j.jde.2005.06.017.

[13]

A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS and SIS epidemiological models, Appl. Math. Lett., 15 (2002), 955-960. doi: 10.1016/S0893-9659(02)00069-1.

[14]

Y. A. Kutoyants, Statistical Inference for Ergodic Diffusion Processes, Springer, London, 2004.

[15]

W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204. doi: 10.1007/BF00276956.

[16]

W. M. Liu, H. W. Hethcote and S. A. Levin, Dynamical behaviour of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380. doi: 10.1007/BF00277162.

[17]

Q. Lu, Stability of SIRS system with random perturbations, Phys. A., 388 (2009), 3677-3686. doi: 10.1016/j.physa.2009.05.036.

[18]

W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time-delay, Appl. Math. Lett., 17 (2004), 1141-1145. doi: 10.1016/j.aml.2003.11.005.

[19]

X. Mao, Stablity of Stochastic Differential Equations with Respect to Semimartingales, Longman Scientific & Technical Harlow, UK, 1991.

[20]

X. Mao, Exponentially Stability of Stochastic Differential Equations, Marcel Dekker, New York, 1994.

[21]

X. Mao, Stochastic Differential Equations and Their Applications, 2nd ed., Horwood Publishing, Chichester, 1997.

[22]

J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989. doi: 10.1007/b98869.

[23]

I. Nasell, Stochastic models of some endemic infections, Math. Biosci., 179 (2002), 1-19. doi: 10.1016/S0025-5564(02)00098-6.

[24]

E. Tornatore, S. M. Buccellato and P. Vetro, Stability of a stochastic SIR system, Phys. A., 354 (2005), 111-126. doi: 10.1016/j.physa.2005.02.057.

[25]

C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM. J. Control. Optim., 46 (2007), 1155-1179. doi: 10.1137/060649343.

[1]

Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265

[2]

Chihurn Kim, Dong Han Kim. On the law of logarithm of the recurrence time. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 581-587. doi: 10.3934/dcds.2004.10.581

[3]

Petr Kůrka, Vincent Penné, Sandro Vaienti. Dynamically defined recurrence dimension. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 137-146. doi: 10.3934/dcds.2002.8.137

[4]

Serge Troubetzkoy. Recurrence in generic staircases. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1047-1053. doi: 10.3934/dcds.2012.32.1047

[5]

Michael Blank. Recurrence for measurable semigroup actions. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1649-1665. doi: 10.3934/dcds.2020335

[6]

Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1

[7]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[8]

Milton Ko. Rényi entropy and recurrence. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2403-2421. doi: 10.3934/dcds.2013.33.2403

[9]

Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729

[10]

Oliver Jenkinson. Ergodic Optimization. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 197-224. doi: 10.3934/dcds.2006.15.197

[11]

Jie Li, Kesong Yan, Xiangdong Ye. Recurrence properties and disjointness on the induced spaces. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1059-1073. doi: 10.3934/dcds.2015.35.1059

[12]

Rafael De La Llave, A. Windsor. An application of topological multiple recurrence to tiling. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 315-324. doi: 10.3934/dcdss.2009.2.315

[13]

A. Gasull, Víctor Mañosa, Xavier Xarles. Rational periodic sequences for the Lyness recurrence. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 587-604. doi: 10.3934/dcds.2012.32.587

[14]

Jean René Chazottes, F. Durand. Local rates of Poincaré recurrence for rotations and weak mixing. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 175-183. doi: 10.3934/dcds.2005.12.175

[15]

Vincent Penné, Benoît Saussol, Sandro Vaienti. Dimensions for recurrence times: topological and dynamical properties. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 783-798. doi: 10.3934/dcds.1999.5.783

[16]

Piotr Oprocha. Chain recurrence in multidimensional time discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1039-1056. doi: 10.3934/dcds.2008.20.1039

[17]

Benoît Saussol. Recurrence rate in rapidly mixing dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 259-267. doi: 10.3934/dcds.2006.15.259

[18]

Ethan M. Ackelsberg. Rigidity, weak mixing, and recurrence in abelian groups. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1669-1705. doi: 10.3934/dcds.2021168

[19]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[20]

Roy Adler, Bruce Kitchens, Michael Shub. Stably ergodic skew products. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 349-350. doi: 10.3934/dcds.1996.2.349

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (27)

Other articles
by authors

[Back to Top]