Citation: |
[1] |
E. J. Allen, L. J. S. Allen, A. Arciniega and P. E. Greenwood, Construction of equivalent stochastic differential equation models, Stoch Anal Appl., 26 (2008), 274-297.doi: 10.1080/07362990701857129. |
[2] |
R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I, Nature., 280 (1979), 361-367, doi: 10.1038/280361a0.doi: 10.1038/280361a0. |
[3] |
N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and Its Applications, Second edition. Hafner Press [Macmillan Publishing Co., Inc.] New York, 1975. |
[4] |
G. K. Basak and R. N. Bhattacharya, Stability in distribution for a class of singular diffusions, Ann Probab., 20 (1992), 312-321.doi: 10.1214/aop/1176989928. |
[5] |
P. H. Baxendale and P. E. Greenwood, Sustained oscillations for density dependent Markov processes, J. Math. Biol., 63 (2011), 433-457.doi: 10.1007/s00285-010-0376-2. |
[6] |
S. Busenberg and K. Cooke, Vertically Transmitted Diseases: Models and Dynamics, Springer, Berlin, 1993.doi: 10.1007/978-3-642-75301-5. |
[7] |
G. Chen and T. Li, Stability of stochastic delayed SIR model, Stoch Dynam., 9 (2009), 231-252.doi: 10.1142/S0219493709002658. |
[8] |
Y. S. Chow, Local convergence of martingales and the law of large numbers, Ann. Math. Statist., 36 (1965), 552-558.doi: 10.1214/aoms/1177700166. |
[9] |
A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876-902.doi: 10.1137/10081856X. |
[10] |
R. Z. Hasminskii, Stochastic Stability of Differential Equations, Alphen aan den Rijn, The Netherlands, 1980. |
[11] |
H. W. Hethcote and D. W. Tudor, Integral equation models for endemic infectious diseases, J. Math. Biol., 9 (1980), 37-47.doi: 10.1007/BF00276034. |
[12] |
L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations., 217 (2005), 26-53.doi: 10.1016/j.jde.2005.06.017. |
[13] |
A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS and SIS epidemiological models, Appl. Math. Lett., 15 (2002), 955-960.doi: 10.1016/S0893-9659(02)00069-1. |
[14] |
Y. A. Kutoyants, Statistical Inference for Ergodic Diffusion Processes, Springer, London, 2004. |
[15] |
W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.doi: 10.1007/BF00276956. |
[16] |
W. M. Liu, H. W. Hethcote and S. A. Levin, Dynamical behaviour of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.doi: 10.1007/BF00277162. |
[17] |
Q. Lu, Stability of SIRS system with random perturbations, Phys. A., 388 (2009), 3677-3686.doi: 10.1016/j.physa.2009.05.036. |
[18] |
W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time-delay, Appl. Math. Lett., 17 (2004), 1141-1145.doi: 10.1016/j.aml.2003.11.005. |
[19] |
X. Mao, Stablity of Stochastic Differential Equations with Respect to Semimartingales, Longman Scientific & Technical Harlow, UK, 1991. |
[20] |
X. Mao, Exponentially Stability of Stochastic Differential Equations, Marcel Dekker, New York, 1994. |
[21] |
X. Mao, Stochastic Differential Equations and Their Applications, 2nd ed., Horwood Publishing, Chichester, 1997. |
[22] |
J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989.doi: 10.1007/b98869. |
[23] |
I. Nasell, Stochastic models of some endemic infections, Math. Biosci., 179 (2002), 1-19.doi: 10.1016/S0025-5564(02)00098-6. |
[24] |
E. Tornatore, S. M. Buccellato and P. Vetro, Stability of a stochastic SIR system, Phys. A., 354 (2005), 111-126.doi: 10.1016/j.physa.2005.02.057. |
[25] |
C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM. J. Control. Optim., 46 (2007), 1155-1179.doi: 10.1137/060649343. |