2014, 11(5): 1027-1043. doi: 10.3934/mbe.2014.11.1027

A theoretical study of factors influencing calcium-secretion coupling in a presynaptic active zone model

1. 

Dept. Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Santander, 39005

2. 

Area de Química Aplicada, Universidad Autónoma Metropolitana-Azcapotzalco, 02200-México D.F., Mexico

3. 

Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, 39005-Santander, Spain

4. 

Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Alicante, Spain

Received  April 2013 Revised  April 2014 Published  June 2014

A theoretical analysis of some of the relevant factors influencing the calcium time course and the strength and timing of release probabilities of vesicles evoked by an action potential in a calyx-type active zone is presented in this paper. In particular, our study focus on the comparison of cooperative vs non-cooperative calcium binding by the release site and the effect of the number of Ca$^{2+}$ binding sites on the calcium sensitivity for release. Regarding the comparison of cooperative and non-cooperative kinetic schemes, our simulations show that quite different results are obtained when considering one or another: a reduction in the release probability of more than a $50\,\%$ is obtained when considering the cooperative kinetic scheme. Also, a delay in the average time for release appears when using this model for the calcium sensor.
    Our study also shows that a non-cooperative kinetic binding scheme gives rise to a well defined average calcium level for release assuming that the same kinetic constants are considered for all the sites. Our results also suggest that the central value of the calcium sensitivity for release depends on the number of binding sites $N$ and the dissociation constant $K_{D}$ with a scaling law depending on $N K_{D}$.
Citation: Amparo Gil, Virginia González-Vélez, Javier Segura, Luis Miguel Gutiérrez. A theoretical study of factors influencing calcium-secretion coupling in a presynaptic active zone model. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1027-1043. doi: 10.3934/mbe.2014.11.1027
References:
[1]

S. Blanes, F. Casas, J. A. Oteo and J. Ros, The magnus expansion and some of its applications,, Physics Reports, 470 (2009), 151.  doi: 10.1016/j.physrep.2008.11.001.  Google Scholar

[2]

J. H. Bollmann and B. Sakmann, Control of synaptic strength and timing by the release-site $Ca^{2+}$ signal,, Nat. Neurosci., 8 (2005), 426.   Google Scholar

[3]

J. H. Bollmann, B. Sakmann and J. G. G. Borst, Calcium sensitivity of glutamate release in a calyx-type terminal,, Science, 289 (2000), 953.  doi: 10.1126/science.289.5481.953.  Google Scholar

[4]

J. G. G. Borst and B. Sakmann, Calcium influx and transmitter release in a fast cns synapse,, Nature, 383 (1996), 431.  doi: 10.1038/383431a0.  Google Scholar

[5]

J. G. G. Borst and B. Sakmann, Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem,, J. Physiol., 506 (1998), 143.  doi: 10.1111/j.1469-7793.1998.143bx.x.  Google Scholar

[6]

A. Gil and V. González-Vélez, Exocytotic dynamics and calcium cooperativity effects in the calyx of held synapse: A modelling study,, J. Comp. Neurosci., 28 (2010), 65.  doi: 10.1007/s10827-009-0187-x.  Google Scholar

[7]

A. Gil and J. Segura, Ca3D: A Monte Carlo code to simulate 3D buffered calcium diffusion of ions in sub-membrane domains,, Comput. Phys. Commun., 136 (2001), 269.   Google Scholar

[8]

A. Gil, J. Segura, J. A. G. Pertusa and B. Soria, Monte Carlo simulation of 3-D buffered $Ca^{2+}$ diffusion in neuroendocrine cells,, Biophys. J., 78 (2000), 13.   Google Scholar

[9]

Y. Han, P. S. Kaeser, T. C. Südhof and R. Schneggenburger, Rim determines Ca(2+) channel density and vesicle docking at the presynaptic active zone,, Neuron., 69 (2011), 304.   Google Scholar

[10]

S. Hefft and P. Jonas P, Asynchronous gaba release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse,, Nat. Neurosci., 8 (2005), 1319.  doi: 10.1038/nn1542.  Google Scholar

[11]

O. Kochubey and R. Schneggenburger, Regulation of transmitter release by $Ca^{2+}$ and synaptotagmin: Insights from a large cns synapse,, Trends Neurosci., 34 (2011), 237.   Google Scholar

[12]

O. Kochubey and R. Schneggenburger, Synaptotagmin increases the dynamic range of synapses by driving $Ca^{2+}$-evoked release and by clamping a near-linear remaining $Ca^{2+}$ sensor,, Neuron., 69 (2011), 736.   Google Scholar

[13]

X. L. Lou, V. Scheuss and R. Schneggenburger, Allosteric modulation of the presynaptic $Ca^{2+}$ sensor for vesicle fusion,, Nature, 435 (2005), 497.   Google Scholar

[14]

W. Magnus, On the exponential solution of differential equations for a linear operator,, Commun. Pure Appl. Math., 7 (1954), 649.  doi: 10.1002/cpa.3160070404.  Google Scholar

[15]

C. J. Meinrenken, J. G. G. Borst and B. Sakmann, Calcium secretion coupling at calyx of held goverened by nonuniform channel-vesicle topography,, J. Neurosci., 22 (2002), 1648.   Google Scholar

[16]

C. J. Meinrenken, J. G. G. Borst and B. Sakmann, Local routes revisited: The space and time dependence of the $Ca^{2+}$ signal for phasic transmitter release at the rat calyx of held,, J. Physiol., 547 (2003), 665.   Google Scholar

[17]

M. Müller, F. Felmy, B Schwaller and R Schneggenburger, Parvalbumin Is a Mobile Presynaptic $Ca^{2+}$ Buffer in the Calyx of Held that Accelerates the Decay of $Ca^{2+}$ and Short-Term Facilitation,, The Journal of Neuroscience, 27 (2007), 2261.   Google Scholar

[18]

K. Sātzler and et al., Three-dimensional reconstruction of a calyx of held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body,, J. Neurosci., 22 (2002), 10567.   Google Scholar

[19]

R. Schneggenburger and E. Neher, Intracellular calcium dependence of transmitter release rates at a fast central synapse,, Nature, 406 (2000), 889.   Google Scholar

[20]

J. Segura, A. Gil and B. Soria, Modeling study of exocytosis in neuroendocrine cells: Influence of the geometrical parameters,, Biophys. J., 79 (2000), 1771.  doi: 10.1016/S0006-3495(00)76429-0.  Google Scholar

[21]

J. Sun, Z. P. Pang, D. Qin, A. T. Fahim, R. Adachi and T. C. Sudhof, A dual-$Ca^{2+}$-sensor model for neurotransmitter release in a central synapse,, Nature, 450 (2007), 676.   Google Scholar

[22]

L.-Y. Wang, E. Neher and H. Taschenberger, Synaptic vesicles in mature calyx of held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release,, J. Neurosci., 28 (2008), 14450.  doi: 10.1523/JNEUROSCI.4245-08.2008.  Google Scholar

show all references

References:
[1]

S. Blanes, F. Casas, J. A. Oteo and J. Ros, The magnus expansion and some of its applications,, Physics Reports, 470 (2009), 151.  doi: 10.1016/j.physrep.2008.11.001.  Google Scholar

[2]

J. H. Bollmann and B. Sakmann, Control of synaptic strength and timing by the release-site $Ca^{2+}$ signal,, Nat. Neurosci., 8 (2005), 426.   Google Scholar

[3]

J. H. Bollmann, B. Sakmann and J. G. G. Borst, Calcium sensitivity of glutamate release in a calyx-type terminal,, Science, 289 (2000), 953.  doi: 10.1126/science.289.5481.953.  Google Scholar

[4]

J. G. G. Borst and B. Sakmann, Calcium influx and transmitter release in a fast cns synapse,, Nature, 383 (1996), 431.  doi: 10.1038/383431a0.  Google Scholar

[5]

J. G. G. Borst and B. Sakmann, Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem,, J. Physiol., 506 (1998), 143.  doi: 10.1111/j.1469-7793.1998.143bx.x.  Google Scholar

[6]

A. Gil and V. González-Vélez, Exocytotic dynamics and calcium cooperativity effects in the calyx of held synapse: A modelling study,, J. Comp. Neurosci., 28 (2010), 65.  doi: 10.1007/s10827-009-0187-x.  Google Scholar

[7]

A. Gil and J. Segura, Ca3D: A Monte Carlo code to simulate 3D buffered calcium diffusion of ions in sub-membrane domains,, Comput. Phys. Commun., 136 (2001), 269.   Google Scholar

[8]

A. Gil, J. Segura, J. A. G. Pertusa and B. Soria, Monte Carlo simulation of 3-D buffered $Ca^{2+}$ diffusion in neuroendocrine cells,, Biophys. J., 78 (2000), 13.   Google Scholar

[9]

Y. Han, P. S. Kaeser, T. C. Südhof and R. Schneggenburger, Rim determines Ca(2+) channel density and vesicle docking at the presynaptic active zone,, Neuron., 69 (2011), 304.   Google Scholar

[10]

S. Hefft and P. Jonas P, Asynchronous gaba release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse,, Nat. Neurosci., 8 (2005), 1319.  doi: 10.1038/nn1542.  Google Scholar

[11]

O. Kochubey and R. Schneggenburger, Regulation of transmitter release by $Ca^{2+}$ and synaptotagmin: Insights from a large cns synapse,, Trends Neurosci., 34 (2011), 237.   Google Scholar

[12]

O. Kochubey and R. Schneggenburger, Synaptotagmin increases the dynamic range of synapses by driving $Ca^{2+}$-evoked release and by clamping a near-linear remaining $Ca^{2+}$ sensor,, Neuron., 69 (2011), 736.   Google Scholar

[13]

X. L. Lou, V. Scheuss and R. Schneggenburger, Allosteric modulation of the presynaptic $Ca^{2+}$ sensor for vesicle fusion,, Nature, 435 (2005), 497.   Google Scholar

[14]

W. Magnus, On the exponential solution of differential equations for a linear operator,, Commun. Pure Appl. Math., 7 (1954), 649.  doi: 10.1002/cpa.3160070404.  Google Scholar

[15]

C. J. Meinrenken, J. G. G. Borst and B. Sakmann, Calcium secretion coupling at calyx of held goverened by nonuniform channel-vesicle topography,, J. Neurosci., 22 (2002), 1648.   Google Scholar

[16]

C. J. Meinrenken, J. G. G. Borst and B. Sakmann, Local routes revisited: The space and time dependence of the $Ca^{2+}$ signal for phasic transmitter release at the rat calyx of held,, J. Physiol., 547 (2003), 665.   Google Scholar

[17]

M. Müller, F. Felmy, B Schwaller and R Schneggenburger, Parvalbumin Is a Mobile Presynaptic $Ca^{2+}$ Buffer in the Calyx of Held that Accelerates the Decay of $Ca^{2+}$ and Short-Term Facilitation,, The Journal of Neuroscience, 27 (2007), 2261.   Google Scholar

[18]

K. Sātzler and et al., Three-dimensional reconstruction of a calyx of held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body,, J. Neurosci., 22 (2002), 10567.   Google Scholar

[19]

R. Schneggenburger and E. Neher, Intracellular calcium dependence of transmitter release rates at a fast central synapse,, Nature, 406 (2000), 889.   Google Scholar

[20]

J. Segura, A. Gil and B. Soria, Modeling study of exocytosis in neuroendocrine cells: Influence of the geometrical parameters,, Biophys. J., 79 (2000), 1771.  doi: 10.1016/S0006-3495(00)76429-0.  Google Scholar

[21]

J. Sun, Z. P. Pang, D. Qin, A. T. Fahim, R. Adachi and T. C. Sudhof, A dual-$Ca^{2+}$-sensor model for neurotransmitter release in a central synapse,, Nature, 450 (2007), 676.   Google Scholar

[22]

L.-Y. Wang, E. Neher and H. Taschenberger, Synaptic vesicles in mature calyx of held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release,, J. Neurosci., 28 (2008), 14450.  doi: 10.1523/JNEUROSCI.4245-08.2008.  Google Scholar

[1]

Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020360

[2]

Raffaele D'Ambrosio, Martina Moccaldi, Beatrice Paternoster. Numerical preservation of long-term dynamics by stochastic two-step methods. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2763-2773. doi: 10.3934/dcdsb.2018105

[3]

Jiying Ma, Dongmei Xiao. Nonlinear dynamics of a mathematical model on action potential duration and calcium transient in paced cardiac cells. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2377-2396. doi: 10.3934/dcdsb.2013.18.2377

[4]

Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. Modeling chemotaxis from $L^2$--closure moments in kinetic theory of active particles. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 847-863. doi: 10.3934/dcdsb.2013.18.847

[5]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[6]

Yue Qiu, Sara Grundel, Martin Stoll, Peter Benner. Efficient numerical methods for gas network modeling and simulation. Networks & Heterogeneous Media, 2020, 15 (4) : 653-679. doi: 10.3934/nhm.2020018

[7]

Lambertus A. Peletier. Modeling drug-protein dynamics. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 191-207. doi: 10.3934/dcdss.2012.5.191

[8]

Yu Wu, Xiaopeng Zhao, Mingjun Zhang. Dynamics of stochastic mutation to immunodominance. Mathematical Biosciences & Engineering, 2012, 9 (4) : 937-952. doi: 10.3934/mbe.2012.9.937

[9]

H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1

[10]

Tomás Caraballo, Renato Colucci. A comparison between random and stochastic modeling for a SIR model. Communications on Pure & Applied Analysis, 2017, 16 (1) : 151-162. doi: 10.3934/cpaa.2017007

[11]

Marina Dolfin, Mirosław Lachowicz. Modeling opinion dynamics: How the network enhances consensus. Networks & Heterogeneous Media, 2015, 10 (4) : 877-896. doi: 10.3934/nhm.2015.10.877

[12]

Nicola Bellomo, Abdelghani Bellouquid. On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms. Networks & Heterogeneous Media, 2011, 6 (3) : 383-399. doi: 10.3934/nhm.2011.6.383

[13]

Andreas Schadschneider, Armin Seyfried. Empirical results for pedestrian dynamics and their implications for modeling. Networks & Heterogeneous Media, 2011, 6 (3) : 545-560. doi: 10.3934/nhm.2011.6.545

[14]

Steady Mushayabasa, Drew Posny, Jin Wang. Modeling the intrinsic dynamics of foot-and-mouth disease. Mathematical Biosciences & Engineering, 2016, 13 (2) : 425-442. doi: 10.3934/mbe.2015010

[15]

Darja Kalajdzievska, Michael Yi Li. Modeling the effects of carriers on transmission dynamics of infectious diseases. Mathematical Biosciences & Engineering, 2011, 8 (3) : 711-722. doi: 10.3934/mbe.2011.8.711

[16]

Dominik Wodarz. Computational modeling approaches to studying the dynamics of oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 939-957. doi: 10.3934/mbe.2013.10.939

[17]

Adélia Sequeira, Rafael F. Santos, Tomáš Bodnár. Blood coagulation dynamics: mathematical modeling and stability results. Mathematical Biosciences & Engineering, 2011, 8 (2) : 425-443. doi: 10.3934/mbe.2011.8.425

[18]

Pierre Degond, Gadi Fibich, Benedetto Piccoli, Eitan Tadmor. Special issue on modeling and control in social dynamics. Networks & Heterogeneous Media, 2015, 10 (3) : i-ii. doi: 10.3934/nhm.2015.10.3i

[19]

Lan Zou, Jing Chen, Shigui Ruan. Modeling and analyzing the transmission dynamics of visceral leishmaniasis. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1585-1604. doi: 10.3934/mbe.2017082

[20]

Jianhua Huang, Tianlong Shen, Yuhong Li. Dynamics of stochastic fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2051-2067. doi: 10.3934/dcdsb.2015.20.2051

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

[Back to Top]