Citation: |
[1] |
L. J. Abu-Raddad and I. M. Longini, No HIV stage is dominant in driving the HIV epidemic in sub-Saharan Africa, AIDS, 22 (2008), 1055-1061.doi: 10.1097/QAD.0b013e3282f8af84. |
[2] |
S. S. Alistar, D. K. Owens and M. L. Brandeau, Effectiveness and cost effectiveness of expanding harm reduction and antiretroviral therapy in a mixed HIV epidemic: A modeling analysis for Ukraine, PLoS Med., 8 (2011), e1000423.doi: 10.1371/journal.pmed.1000423. |
[3] |
N. T. Bailey, The use of operational modeling of HIV/AIDS in a systems approach to public health decision making, Math. Biosci., 107 (1991), 413-430.doi: 10.1016/0025-5564(91)90017-D. |
[4] |
M. C. Boily, D. Dimitrov, S. S. Abdool Karim and B. Masse, The future role of rectal and vaginal microbicides to prevent HIV infection in heterosexual populations: Implications for product development and prevention, Sex. Transm. Infect., 87 (2011), 646-653.doi: 10.1136/sextrans-2011-050184. |
[5] |
M. Brockerhoff and Ann E. Biddlecom, Migration, behavior and the risk of HIV in Kenya, International Migration Review, 33 (1999), 833-856.doi: 10.2307/2547354. |
[6] |
P. Byass, M. Alberts and S. Burger, Motherhood, migration and mortality in Dikgale: Modelling life events among women in a rural South African community, Public Health, 125 (2011), 318-323.doi: 10.1016/j.puhe.2011.02.012. |
[7] |
V. Cambiano and A. N. Phillips, Modelling the impact of treatment with individual antiretrovirals, Curr. Opin. HIV AIDS, 6 (2011), 124-130.doi: 10.1097/COH.0b013e328343ad66. |
[8] |
C. S. Camlin, V. Hosegood, M. L. Newell, N. McGrath, T. Barnighausen and R. C. Snow, Gender, migration and HIV in rural KwaZulu-Natal, South Africa, Plos One, 5 (2010), e11539.doi: 10.1371/journal.pone.0011539. |
[9] |
N. B. Carnegie and M. Morris, Size matters: Concurrency and the epidemic potential of HIV in small networks, PLoS ONE, 7 (2012), e43048.doi: 10.1371/journal.pone.0043048. |
[10] |
S. Cassels, Samuel J. Clark and M. Morris, Mathematical models for HIV transmission dynamics, JAIDS- Journal of Acquired Immune Deficiency Syndrome, 47 (2008), S34-S39.doi: 10.1097/QAI.0b013e3181605da3. |
[11] |
E. Coast, Local understandings of, and responses to, HIV: Rural-urban migrants in Tanzania, Social Science & Medicine, 63 (2006), 1000-1010.doi: 10.1016/j.socscimed.2006.03.009. |
[12] |
M. P. Coffee, G. P. Garnett, M. Mlilo, H. A. C. M. Voeten, S. Chandiwana and S. Gregson, Patterns of movement and risk of HIV infection in rural Zimbabwe, Journal of Infectious Diseases, 191 (2005), S159-S167.doi: 10.1086/425270. |
[13] |
M. Coffee, Mark N. Lurie and Geoff P. Garnett, Modelling the impact of migration on the HIV epidemic in South Africa, {AIDS}, 21 (2007), 343-350.doi: 10.1097/QAD.0b013e328011dac9. |
[14] |
D. F. Cuadros, P. H. Crowley, B. Augustine, S. L. Stewart and G. Garcia-Ramos, Effect of variable transmission rate on the dynamics of HIV in sub-Saharan Africa, BMC Infect. Dis., 11 (2011), p216.doi: 10.1186/1471-2334-11-216. |
[15] |
K. D. Deane, J. O. Parkhurst and D. Johnston, Linking migration, mobility and HIV, Tropical Medicine & International Health, 15 (2010), 1458-1463.doi: 10.1111/j.1365-3156.2010.02647.x. |
[16] |
K. Dietz and K. P. Hadeler, Epidemiological models for sexually transmitted diseases, J. Math. Biol., 26 (1988), 1-25.doi: 10.1007/BF00280169. |
[17] |
K. Dietz and W. Tudor, Triangles in heterosexual HIV transmission, in AIDS Epidemiology: Methodological Issues (eds. N. P. Jewell, K. Dietz and V. T. Farewell), Birkhäuser, 1992, 143-155.doi: 10.1007/978-1-4757-1229-2_7. |
[18] |
D. T. Dimitrov, M. C. Boily, R. F. Baggaley and B. Masse, Modeling the gender-specific impact of vaginal microbicides on HIV transmission, J. Theor. Biol., 288 (2011), 9-20.doi: 10.1016/j.jtbi.2011.08.001. |
[19] |
J. W. Eaton, L. F. Johnson, J. A. Salomon, T. Barnighausen, E. Bendavid, A. Bershteyn, D. E. Bloom, V. Cambiano, C. Fraser, J. A. Hontelez, S. Humair, D. J. Klein, E. F. Long, A. N. Phillips, C. Pretorius, J. Stover, E. A. Wenger, B. G. Williams and T. B. Hallett, HIV Treatment as Prevention: Systematic Comparison of Mathematical Models of the Potential Impact of Antiretroviral Therapy on HIV Incidence in South Africa, PLoS Medicine, 9 (2012), e1001245.doi: 10.1371/journal.pmed.1001245. |
[20] |
E. A. Enns, M. L. Brandeau, T. K. Igeme and E. Bendavid, Assessing effectiveness and cost-effectiveness of concurrency reduction for HIV prevention, Int. J. STD AIDS, 22 (2011), 558-567.doi: 10.1258/ijsa.2011.010322. |
[21] |
G. P. Garnett, P. J. White and H. Ward, Fewer partners or more condoms? Modelling the effectiveness of STI prevention interventions, Sex. Transm. Infect., 84 (2008), 4-11.doi: 10.1136/sti.2008.029850. |
[22] |
G. B. Gomez, A. Borquez, C. F. Caceres, E. R. Segura, R. M. Grant, G. P. Garnett and T. B. Hallett, The potential impact of pre-exposure prophylaxis for HIV prevention among men who have sex with men and transwomen in Lima, Peru: A mathematical modelling study, PLoS Med., 9 (2012), e1001323.doi: 10.1371/journal.pmed.1001323. |
[23] |
S. M. Goodreau, L. P. Goicochea and J. Sanchez, Sexual role and transmission of HIV Type 1 among men who have sex with men, in Peru, J. Infect. Dis., 191 (2005), S147-S158.doi: 10.1086/425268. |
[24] |
S. M. Goodreau and M. R. Golden, Biological and demographic causes of high HIV and sexually transmitted disease prevalence in men who have sex with men, Sex. Transm. Infect., 83 (2007), 458-462.doi: 10.1136/sti.2007.025627. |
[25] |
S. M. Goodreau, S. Cassels, D. Kasprzyk, D. E. Montao, A. Greek and M. Morris, Concurrent partnerships, acute infection and HIV epidemic dynamics among young adults in Zimbabwe, AIDS and Behavior, 16 (2012), 312-322.doi: 10.1007/s10461-010-9858-x. |
[26] |
S. M. Goodreau, A decade of modelling research yields considerable evidence for the importance of concurrency: A response to Sawers and Stillwaggon, Journal of the International AIDS Society, 14 (2011), p12.doi: 10.1186/1758-2652-14-12. |
[27] |
S. M. Goodreau, N. B. Carnegie, E. Vittinghoff, J. R. Lama, J. Sanchez, B. Grinsztejn, B. A. Koblin, K. H. Mayer and S. P. Buchbinder, What drives the US and Peruvian HIV epidemics in men who have sex with men (MSM)? PLoS ONE, 7 (2012), e50522.doi: 10.1371/journal.pone.0050522. |
[28] |
K. P. Hadeler, R. Waldstatter and A. Worz-Busekros, Models for pair formation in bisexual populations, J. Math. Biol., 26 (1988), 635-649.doi: 10.1007/BF00276145. |
[29] |
M. S. Handcock, D. R. Hunter, C. T. Butts, S. M. Goodreau and M. Morris, Statnet: Software Tools for the Statistical Modeling of Network Data, Seattle, WA, 2003. Version 2.0. |
[30] |
T. D. Hollingsworth, R. M. Anderson and C. Fraser, HIV-1 transmission, by stage of infection, Journal Of Infectious Diseases, 198 (2008), 687-693.doi: 10.1086/590501. |
[31] |
D. R. Hunter, S. M. Goodreau and M. S. Handcock, Goodness of fit of social network models, Journal of the American Statistical Association, 103 (2008), 248-258.doi: 10.1198/016214507000000446. |
[32] |
L. F. Johnson and P. J. White, A review of mathematical models of HIV/AIDS interventions and their implications for policy, Sex. Transm. Infect., 87 (2011), 629-634.doi: 10.1136/sti.2010.045500. |
[33] |
M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, Princeton, 2008. |
[34] |
M.J. Keeling and P. Rohani, Estimating spatial coupling in epidemiological systems: A mechanistic approach, Ecology Letters, 5 (2002), 20-29.doi: 10.1046/j.1461-0248.2002.00268.x. |
[35] |
J. H. Kim and J. S. Koopman, HIV transmissions by stage in dynamic sexual partnerships, J. Theor. Biol., 298 (2012), 147-153.doi: 10.1016/j.jtbi.2011.12.021. |
[36] |
J. Koopman, Modeling infection transmission, Annu Rev Public Health, 25 (2004), 303-326.doi: 10.1146/annurev.publhealth.25.102802.124353. |
[37] |
J. S. Koopman, Modeling infection transmission- the pursuit of complexities that matter, Epidemiology, 13 (2002), 622-624.doi: 10.1097/00001648-200211000-00004. |
[38] |
J. S. Koopman, Infection transmission science and models, Jpn. J. Infect. Dis., 58 (2005), 3-8. |
[39] |
M. Kretzschmar and M. Carael, Is concurrency driving HIV transmission in sub-Saharan African sexual networks? The significance of sexual partnership typology, AIDS Behav., 16 (2012), 1746-1752.doi: 10.1007/s10461-012-0254-6. |
[40] |
P. N. Krivitsky, M. S. Handcock and M. Morris, Adjusting for network size and composition effects in exponential-family random graph models, Statistical Methodology, 8 (2011), 319-339.doi: 10.1016/j.stamet.2011.01.005. |
[41] |
A. M. Downs, B. Leynaert and I. de Vincenzi, Heterosexual transmission of human immunodeficiency virus: Variability of infectivity throughout the course of infection. European study group on heterosexual transmission of HIV, American Journal of Epidemiology, 148 (1998), 88-96. |
[42] |
M. Lurie, Migration and AIDS in Southern Africa: A review, South African Journal of Science, 96 (2000), 343-347. |
[43] |
M. Lurie, A. Harrison, D. Wilkinson and S. A. Karim, Circular migration and sexual networking in KwaZulu/Natal: Implications for the spread of HIV and other sexually transmitted diseases, Health Transition Review, 7 (1997), 17-27. |
[44] |
M. Lurie, B. G. Williams, K. Zuma, D. Mkaya-Mwamburi, G. P. Garnett, M. D. Swat, J. Gittelsohn and S. A. Karim, The impact of migration on HIV-1 transmission in South Africa, Sexualy Transmitted Diseases, 30 (2003), 149-156.doi: 10.1097/00007435-200302000-00011. |
[45] |
M. Lurie, B. G. Williams, K. Zuma, D. Mkaya-Mwamburi, G. P. Garnett, M. D. Swat, J. Gittelsohn and S. A. Karim, Who infects whom? HIV-1 concordance and discordance among migrant and non-migrant couples in South Africa, AIDS, 17 (2003), 2245-2252.doi: 10.1097/00002030-200310170-00013. |
[46] |
M. N. Lurie, The epidemiology of migration and HIV/AIDS in South Africa, Journal of Ethnic and Migration Studies, 32 (2006), 649-666. |
[47] |
T. L. Mah and D. T. Halperin, Concurrent sexual partnerships and the HIV epidemics in Africa: Evidence to move forward, AIDS Behav., 14 (2010), 11-16.doi: 10.1007/s10461-008-9433-x. |
[48] |
R. M. May and R. M. Anderson, Transmission dynamics of HIV-infection, Nature, 326 (1987), 137-142.doi: 10.1038/326137a0. |
[49] |
R. M. May and R. M. Anderson, The transmission dynamics of human immunodeficiency virus (HIV), Philosophical Transactions Of The Royal Society Of London Series B-Biological Sciences, 321 (1988), 565-607. |
[50] |
L. A. Meyers, Contact network epidemiology: Bond percolation applied to infectious disease prediction and control, Bulletin (New Series) of the American Mathematical Society, 44 (2007), 63-86.doi: 10.1090/S0273-0979-06-01148-7. |
[51] |
M. Morris, L. Vu, A. Leslie-Cook, E. Akom, A. Stephen and D. Sherard, Comparing estimates of multiple and concurrent partnerships across population based surveys: Implications for combination HIV prevention, AIDS Behav., 18 (2014), 783-790.doi: 10.1007/s10461-013-0618-6. |
[52] |
M. Morris, M. S. Handcock and D. R. Hunter, Specification of exponential-family random graph models: Terms and computational aspects, Journal of Statistical Software, 24 (2007), 1-24. |
[53] |
M. Morris, A. E. Kurth, D. T. Hamilton, J. Moody and S. Wakefield, Concurrent partnerships and HIV prevalence disparities by race: Linking science and public health practice, American Journal of Public Health, 99 (2009), 1023-1031.doi: 10.2105/AJPH.2008.147835. |
[54] |
C. Mundandi, D. Vissers, H. Voeten, D. Habbema and S. Gregson, No difference in HIV incidence and sexual behaviour between out-migrants and residents in rural Manicaland, Zimbabwe, Tropical Medicine & International Health, 11 (2006), 705-711. |
[55] |
N. J. Nagelkerke, J. A. Hontelez and S. J. de Vlas, The potential impact of an HIV vaccine with limited protection on HIV incidence in Thailand: A modeling study, Vaccine, 29 (2011), 6079-6085.doi: 10.1016/j.vaccine.2011.06.048. |
[56] |
S. D. Pinkerton, Probability of HIV transmission during acute infection in Rakai, Uganda, AIDS And Behavior, 12 (2008), 677-684.doi: 10.1007/s10461-007-9329-1. |
[57] |
K. A. Powers, A. C. Ghani, W. C. Miller, I. F. Hoffman, A. E. Pettifor, G. Kamanga, F. E. Martinson and M. S. Cohen, The role of acute and early HIV infection in the spread of HIV and implications for transmission prevention strategies in Lilongwe, Malawi: A modelling study, Lancet, 378 (2011), 256-268.doi: 10.1016/S0140-6736(11)60842-8. |
[58] |
T. C. Quinn, Population migration and the spread of types 1 and 2 human immunodeficiency viruses, Proceedings of the National Academy of Sciences, 91 (1994), 2407-2414.doi: 10.1073/pnas.91.7.2407. |
[59] |
W. J. Reidy and S. M. Goodreau, The role of commercial sex venues in the HIV epidemic among men who have sex with men, Epidemiology, 21 (2010), 349-359.doi: 10.1097/EDE.0b013e3181d62147. |
[60] |
G. Reniers and B. Armbruster, HIV status awareness, partnership dissolution and HIV transmission in generalized epidemics, PLoS ONE, 7 (2012), e50669.doi: 10.1371/journal.pone.0050669. |
[61] |
L. E. Rocha, F. Liljeros and P. Holme, Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts, PLoS Comput. Biol., 7 (2011), e1001109.doi: 10.1371/journal.pcbi.1001109. |
[62] |
I. Romieu, S. Sandberg, A. Mohar and T. Awerbuch, Modeling the AIDS epidemic in Mexico City, Hum. Biol., 63 (1991), 683-695. |
[63] |
L. Sawers, A. G. Isaac and E. Stillwaggon, HIV and concurrent sexual partnerships: Modelling the role of coital dilution, J. Int. AIDS Soc., 14 (2011), 44.doi: 10.1186/1758-2652-14-44. |
[64] |
R. W. Setzer, Odesolve: Solvers for Ordinary Differential Equations, Version 0.9-9, 2012. |
[65] |
S. W. Sorensen, S. L. Sansom, J. T. Brooks, G. Marks, E. M. Begier, K. Buchacz, E. A. Dinenno, J. H. Mermin and P. H. Kilmarx, A mathematical model of comprehensive test-and-treat services and HIV incidence among men who have sex with men in the United States, PLoS ONE, 7 (2012), e29098.doi: 10.1371/journal.pone.0029098. |
[66] |
K. E. Tobin, D. German, P. Spikes, J. Patterson and C. Latkin, A comparison of the social and sexual networks of crack-using and non-crack using African American men who have sex with men, J. Urban Health, 88 (2011), 1052-1062.doi: 10.1007/s11524-011-9611-4. |
[67] |
UNAIDS Reference Group on Measurement and Modeling, HIV: Consensus indicators are needed for concurrency, Lancet, 375 (2010), 621-622. |
[68] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[69] |
B. G. Wagner and S. Blower, Universal access to HIV treatment versus universal ‘test and treat': Transmission, drug resistance & treatment costs, PLoS ONE, 7 (2012), e41212.doi: 10.1371/journal.pone.0041212. |
[70] |
M. J. Wawer, R. H. Gray, N. K. Sewankambo, D. Serwadda, X. B. Li, O. Laeyendecker, N. Kiwanuka, G. Kigozi, M. Kiddugavu, T. Lutalo, F. Nalugoda, F. Wabwire-Mangen, M. P. Meehan and T. C. Quinn, Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda, Journal Of Infectious Diseases, 191 (2005), 1403-1409.doi: 10.1086/429411. |