-
Previous Article
Transmission dynamics and control for a brucellosis model in Hinggan League of Inner Mongolia, China
- MBE Home
- This Issue
-
Next Article
What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?
Dynamics of evolutionary competition between budding and lytic viral release strategies
1. | Department of Applied Mathematics, University of Western Ontario, London, Ontario, N6A 5B7, Canada |
2. | Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 |
References:
[1] |
A. Brännstr$\ddot o$m and D. J. T. Sumpter, The role of competition and clustering in population dynamics, Proc. R. Soc. B., 272 (2005), 2065-2072. |
[2] |
J. Carter and V. Saunders, Virology: Principles and Application, John Wiley and Sons, Ltd, 2007. |
[3] |
C. Castillo-Chaves and H. R. Thieme, Asymptotically autonomous epidemic models, in Mathematical Population Dynamics: Analysis of Heterogeneity, I. Theory of Epidemics (eds. O. Arino, et al.), Wuerz, Winnnipeg, 1995, 33-50. |
[4] |
D. Coombs, Optimal viral production, Bull. Math. Biol., 65 (2003), 1003-1023.
doi: 10.1016/S0092-8240(03)00056-9. |
[5] |
H. Garoff, R. Hewson and D. Opstelten, Virus maturation by budding, Microbiology and Moleculer Biology Reviews, 62 (1998), 1171-1190. |
[6] |
M. A. Gilchrist, D. Coombs and A. S. Perelson, Optimizing within-host viral fitness: Infected cell lifespan and virion production rate, J. Theor. Biol. 229 (2004), 281-288.
doi: 10.1016/j.jtbi.2004.04.015. |
[7] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[8] |
N. L. Komarova, Viral reproductive strategies: How can lytic viruses be evolutionarily competitive? J. Theor. Biol., 249 (2007), 766-784.
doi: 10.1016/j.jtbi.2007.09.013. |
[9] |
D. P. Nayak, Assembly and budding of influenza virus, Virus Research, 106 (2004), 147-165.
doi: 10.1016/j.virusres.2004.08.012. |
[10] |
P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variation in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004), 267-288.
doi: 10.3934/mbe.2004.1.267. |
[11] |
L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, J. Appl. Math., 67 (2007), 731-756.
doi: 10.1137/060663945. |
[12] |
H. L. Smith, Monotone Dynamical Systems. An Introduction To The Theory Of Competitive And Cooperative Systems, Mathematical Surveys and Monographs, 41, AMS, Providence, 1995. |
[13] |
I. N. Wang, D. E. Dykhuizen and L. B. Slobodkin, The evolution of phage lysis timing, Evolutionary Ecology, 10 (1996), 545-558.
doi: 10.1007/BF01237884. |
[14] |
I. N. Wang, Lysis timing and bacteriophage fitness, Genetics, 172 (2006), 17-26.
doi: 10.1534/genetics.105.045922. |
show all references
References:
[1] |
A. Brännstr$\ddot o$m and D. J. T. Sumpter, The role of competition and clustering in population dynamics, Proc. R. Soc. B., 272 (2005), 2065-2072. |
[2] |
J. Carter and V. Saunders, Virology: Principles and Application, John Wiley and Sons, Ltd, 2007. |
[3] |
C. Castillo-Chaves and H. R. Thieme, Asymptotically autonomous epidemic models, in Mathematical Population Dynamics: Analysis of Heterogeneity, I. Theory of Epidemics (eds. O. Arino, et al.), Wuerz, Winnnipeg, 1995, 33-50. |
[4] |
D. Coombs, Optimal viral production, Bull. Math. Biol., 65 (2003), 1003-1023.
doi: 10.1016/S0092-8240(03)00056-9. |
[5] |
H. Garoff, R. Hewson and D. Opstelten, Virus maturation by budding, Microbiology and Moleculer Biology Reviews, 62 (1998), 1171-1190. |
[6] |
M. A. Gilchrist, D. Coombs and A. S. Perelson, Optimizing within-host viral fitness: Infected cell lifespan and virion production rate, J. Theor. Biol. 229 (2004), 281-288.
doi: 10.1016/j.jtbi.2004.04.015. |
[7] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[8] |
N. L. Komarova, Viral reproductive strategies: How can lytic viruses be evolutionarily competitive? J. Theor. Biol., 249 (2007), 766-784.
doi: 10.1016/j.jtbi.2007.09.013. |
[9] |
D. P. Nayak, Assembly and budding of influenza virus, Virus Research, 106 (2004), 147-165.
doi: 10.1016/j.virusres.2004.08.012. |
[10] |
P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variation in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004), 267-288.
doi: 10.3934/mbe.2004.1.267. |
[11] |
L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, J. Appl. Math., 67 (2007), 731-756.
doi: 10.1137/060663945. |
[12] |
H. L. Smith, Monotone Dynamical Systems. An Introduction To The Theory Of Competitive And Cooperative Systems, Mathematical Surveys and Monographs, 41, AMS, Providence, 1995. |
[13] |
I. N. Wang, D. E. Dykhuizen and L. B. Slobodkin, The evolution of phage lysis timing, Evolutionary Ecology, 10 (1996), 545-558.
doi: 10.1007/BF01237884. |
[14] |
I. N. Wang, Lysis timing and bacteriophage fitness, Genetics, 172 (2006), 17-26.
doi: 10.1534/genetics.105.045922. |
[1] |
Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859 |
[2] |
Pavol Bokes. Exact and WKB-approximate distributions in a gene expression model with feedback in burst frequency, burst size, and protein stability. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2129-2145. doi: 10.3934/dcdsb.2021126 |
[3] |
Fred Brauer. Age-of-infection and the final size relation. Mathematical Biosciences & Engineering, 2008, 5 (4) : 681-690. doi: 10.3934/mbe.2008.5.681 |
[4] |
Cameron Browne. Immune response in virus model structured by cell infection-age. Mathematical Biosciences & Engineering, 2016, 13 (5) : 887-909. doi: 10.3934/mbe.2016022 |
[5] |
Hossein Mohebbi, Azim Aminataei, Cameron J. Browne, Mohammad Reza Razvan. Hopf bifurcation of an age-structured virus infection model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 861-885. doi: 10.3934/dcdsb.2018046 |
[6] |
Hui li, Manjun Ma. Global dynamics of a virus infection model with repulsive effect. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4783-4797. doi: 10.3934/dcdsb.2019030 |
[7] |
Alexander Rezounenko. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1547-1563. doi: 10.3934/dcdsb.2017074 |
[8] |
Fred Brauer, Zhisheng Shuai, P. van den Driessche. Dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1335-1349. doi: 10.3934/mbe.2013.10.1335 |
[9] |
Jinliang Wang, Ran Zhang, Toshikazu Kuniya. A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2016, 13 (1) : 227-247. doi: 10.3934/mbe.2016.13.227 |
[10] |
Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449 |
[11] |
Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 2009, 6 (2) : 283-299. doi: 10.3934/mbe.2009.6.283 |
[12] |
Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689 |
[13] |
Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060 |
[14] |
Folashade B. Agusto. Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 687-715. doi: 10.3934/dcdsb.2017034 |
[15] |
Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261 |
[16] |
Zhikun She, Xin Jiang. Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3835-3861. doi: 10.3934/dcdsb.2020259 |
[17] |
Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483 |
[18] |
Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749 |
[19] |
Nicola Bellomo, Youshan Tao. Stabilization in a chemotaxis model for virus infection. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 105-117. doi: 10.3934/dcdss.2020006 |
[20] |
Sebastian Aniţa, Ana-Maria Moşsneagu. Optimal harvesting for age-structured population dynamics with size-dependent control. Mathematical Control and Related Fields, 2019, 9 (4) : 607-621. doi: 10.3934/mcrf.2019043 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]