• Previous Article
    Transmission dynamics and control for a brucellosis model in Hinggan League of Inner Mongolia, China
  • MBE Home
  • This Issue
  • Next Article
    What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?
2014, 11(5): 1091-1113. doi: 10.3934/mbe.2014.11.1091

Dynamics of evolutionary competition between budding and lytic viral release strategies

1. 

Department of Applied Mathematics, University of Western Ontario, London, Ontario, N6A 5B7, Canada

2. 

Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7

Received  January 2014 Revised  April 2014 Published  June 2014

In this paper, we consider the evolutionary competition between budding and lytic viral release strategies, using a delay differential equation model with distributed delay. When antibody is not established, the dynamics of competition depends on the respective basic reproductive ratios of the two viruses. If the basic reproductive ratio of budding virus is greater than that of lytic virus and one, budding virus can survive. When antibody is established for both strains but the neutralization capacities are the same for both strains, consequence of the competition also depends only on the basic reproductive ratios of the budding and lytic viruses. Using two concrete forms of the viral production functions, we are also able to conclude that budding virus will outcompete if the rates of viral production, death rates of infected cells and neutralizing capacities of the antibodies are the same for budding and lytic viruses. In this case, budding strategy would have an evolutionary advantage. However, if the antibody neutralization capacity for the budding virus is larger than that for the lytic virus, the lytic virus can outcompete the budding virus provided that its reproductive ratio is very high. An explicit threshold is derived.
Citation: Xiulan Lai, Xingfu Zou. Dynamics of evolutionary competition between budding and lytic viral release strategies. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1091-1113. doi: 10.3934/mbe.2014.11.1091
References:
[1]

A. Brännstr$\ddot o$m and D. J. T. Sumpter, The role of competition and clustering in population dynamics,, Proc. R. Soc. B., 272 (2005), 2065.   Google Scholar

[2]

J. Carter and V. Saunders, Virology: Principles and Application,, John Wiley and Sons, (2007).   Google Scholar

[3]

C. Castillo-Chaves and H. R. Thieme, Asymptotically autonomous epidemic models,, in Mathematical Population Dynamics: Analysis of Heterogeneity, (1995), 33.   Google Scholar

[4]

D. Coombs, Optimal viral production,, Bull. Math. Biol., 65 (2003), 1003.  doi: 10.1016/S0092-8240(03)00056-9.  Google Scholar

[5]

H. Garoff, R. Hewson and D. Opstelten, Virus maturation by budding,, Microbiology and Moleculer Biology Reviews, 62 (1998), 1171.   Google Scholar

[6]

M. A. Gilchrist, D. Coombs and A. S. Perelson, Optimizing within-host viral fitness: Infected cell lifespan and virion production rate,, J. Theor. Biol. 229 (2004), 229 (2004), 281.  doi: 10.1016/j.jtbi.2004.04.015.  Google Scholar

[7]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993).  doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[8]

N. L. Komarova, Viral reproductive strategies: How can lytic viruses be evolutionarily competitive?, J. Theor. Biol., 249 (2007), 766.  doi: 10.1016/j.jtbi.2007.09.013.  Google Scholar

[9]

D. P. Nayak, Assembly and budding of influenza virus,, Virus Research, 106 (2004), 147.  doi: 10.1016/j.virusres.2004.08.012.  Google Scholar

[10]

P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variation in the production rate of viral particles and the death rate of productively infected cells,, Math. Biosci. Eng., 1 (2004), 267.  doi: 10.3934/mbe.2004.1.267.  Google Scholar

[11]

L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, J. Appl. Math., 67 (2007), 731.  doi: 10.1137/060663945.  Google Scholar

[12]

H. L. Smith, Monotone Dynamical Systems. An Introduction To The Theory Of Competitive And Cooperative Systems,, Mathematical Surveys and Monographs, (1995).   Google Scholar

[13]

I. N. Wang, D. E. Dykhuizen and L. B. Slobodkin, The evolution of phage lysis timing,, Evolutionary Ecology, 10 (1996), 545.  doi: 10.1007/BF01237884.  Google Scholar

[14]

I. N. Wang, Lysis timing and bacteriophage fitness,, Genetics, 172 (2006), 17.  doi: 10.1534/genetics.105.045922.  Google Scholar

show all references

References:
[1]

A. Brännstr$\ddot o$m and D. J. T. Sumpter, The role of competition and clustering in population dynamics,, Proc. R. Soc. B., 272 (2005), 2065.   Google Scholar

[2]

J. Carter and V. Saunders, Virology: Principles and Application,, John Wiley and Sons, (2007).   Google Scholar

[3]

C. Castillo-Chaves and H. R. Thieme, Asymptotically autonomous epidemic models,, in Mathematical Population Dynamics: Analysis of Heterogeneity, (1995), 33.   Google Scholar

[4]

D. Coombs, Optimal viral production,, Bull. Math. Biol., 65 (2003), 1003.  doi: 10.1016/S0092-8240(03)00056-9.  Google Scholar

[5]

H. Garoff, R. Hewson and D. Opstelten, Virus maturation by budding,, Microbiology and Moleculer Biology Reviews, 62 (1998), 1171.   Google Scholar

[6]

M. A. Gilchrist, D. Coombs and A. S. Perelson, Optimizing within-host viral fitness: Infected cell lifespan and virion production rate,, J. Theor. Biol. 229 (2004), 229 (2004), 281.  doi: 10.1016/j.jtbi.2004.04.015.  Google Scholar

[7]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993).  doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[8]

N. L. Komarova, Viral reproductive strategies: How can lytic viruses be evolutionarily competitive?, J. Theor. Biol., 249 (2007), 766.  doi: 10.1016/j.jtbi.2007.09.013.  Google Scholar

[9]

D. P. Nayak, Assembly and budding of influenza virus,, Virus Research, 106 (2004), 147.  doi: 10.1016/j.virusres.2004.08.012.  Google Scholar

[10]

P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variation in the production rate of viral particles and the death rate of productively infected cells,, Math. Biosci. Eng., 1 (2004), 267.  doi: 10.3934/mbe.2004.1.267.  Google Scholar

[11]

L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, J. Appl. Math., 67 (2007), 731.  doi: 10.1137/060663945.  Google Scholar

[12]

H. L. Smith, Monotone Dynamical Systems. An Introduction To The Theory Of Competitive And Cooperative Systems,, Mathematical Surveys and Monographs, (1995).   Google Scholar

[13]

I. N. Wang, D. E. Dykhuizen and L. B. Slobodkin, The evolution of phage lysis timing,, Evolutionary Ecology, 10 (1996), 545.  doi: 10.1007/BF01237884.  Google Scholar

[14]

I. N. Wang, Lysis timing and bacteriophage fitness,, Genetics, 172 (2006), 17.  doi: 10.1534/genetics.105.045922.  Google Scholar

[1]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[2]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[5]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[6]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[7]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[8]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[9]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[10]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[11]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[14]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[15]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[19]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[20]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]