Citation: |
[1] |
A. Brännstr$\ddot o$m and D. J. T. Sumpter, The role of competition and clustering in population dynamics, Proc. R. Soc. B., 272 (2005), 2065-2072. |
[2] |
J. Carter and V. Saunders, Virology: Principles and Application, John Wiley and Sons, Ltd, 2007. |
[3] |
C. Castillo-Chaves and H. R. Thieme, Asymptotically autonomous epidemic models, in Mathematical Population Dynamics: Analysis of Heterogeneity, I. Theory of Epidemics (eds. O. Arino, et al.), Wuerz, Winnnipeg, 1995, 33-50. |
[4] |
D. Coombs, Optimal viral production, Bull. Math. Biol., 65 (2003), 1003-1023.doi: 10.1016/S0092-8240(03)00056-9. |
[5] |
H. Garoff, R. Hewson and D. Opstelten, Virus maturation by budding, Microbiology and Moleculer Biology Reviews, 62 (1998), 1171-1190. |
[6] |
M. A. Gilchrist, D. Coombs and A. S. Perelson, Optimizing within-host viral fitness: Infected cell lifespan and virion production rate, J. Theor. Biol. 229 (2004), 281-288.doi: 10.1016/j.jtbi.2004.04.015. |
[7] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.doi: 10.1007/978-1-4612-4342-7. |
[8] |
N. L. Komarova, Viral reproductive strategies: How can lytic viruses be evolutionarily competitive? J. Theor. Biol., 249 (2007), 766-784.doi: 10.1016/j.jtbi.2007.09.013. |
[9] |
D. P. Nayak, Assembly and budding of influenza virus, Virus Research, 106 (2004), 147-165.doi: 10.1016/j.virusres.2004.08.012. |
[10] |
P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variation in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004), 267-288.doi: 10.3934/mbe.2004.1.267. |
[11] |
L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, J. Appl. Math., 67 (2007), 731-756.doi: 10.1137/060663945. |
[12] |
H. L. Smith, Monotone Dynamical Systems. An Introduction To The Theory Of Competitive And Cooperative Systems, Mathematical Surveys and Monographs, 41, AMS, Providence, 1995. |
[13] |
I. N. Wang, D. E. Dykhuizen and L. B. Slobodkin, The evolution of phage lysis timing, Evolutionary Ecology, 10 (1996), 545-558.doi: 10.1007/BF01237884. |
[14] |
I. N. Wang, Lysis timing and bacteriophage fitness, Genetics, 172 (2006), 17-26.doi: 10.1534/genetics.105.045922. |