Citation: |
[1] |
B. Alnseba, B. Chahrazed and M. Pierre, A model for ovine brucellosis incorporating direct and indirect transmission, J. Biol. Dyn., 4 (2010), 2-11.doi: 10.1080/17513750903171688. |
[2] |
S. M. Blower, A. R. McLean and T. C. Porco, et al., The intrinsic transmission dynamics of tuberculosis epidemics, Nature Med., 1 (1995), 815-821.doi: 10.1038/nm0895-815. |
[3] |
S. M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model as an example, Int. Stat. Rev., 62 (1994), 229-243.doi: 10.2307/1403510. |
[4] |
M. J. Corbel, Brucellosis: An overview, Emerg. Infect. Dis., 3 (1997), 213-221.doi: 10.3201/eid0302.970219. |
[5] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R^{0}$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: 10.1007/BF00178324. |
[6] |
O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873-885.doi: 10.1098/rsif.2009.0386. |
[7] |
V. Dobrean, A. Opris and S. Daraban, An epidemiological and surveillance overview of brucellosis in Romania, Vet. Mic., 90 (2002), 157-163.doi: 10.1016/S0378-1135(02)00251-1. |
[8] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[9] |
Hinggan League's annual statistical bulletin, http://www.xamtj.gov.cn/tjgg/ndtjgb/. |
[10] |
Q. Hou, Z. Jin and S. Ruan, Dynamics of rabies epidemics and the impact of control efforts in Guangdong Province, China, J. Theoret. Biol., 300 (2012), 39-47.doi: 10.1016/j.jtbi.2012.01.006. |
[11] |
Q. Hou, X. D. Sun, J. Zhang, Y. J. Liu, Y. M. Wang and Z. Jin, Modeling the transmission dynamics of brucellosis in Inner Mongolia Autonomous Region, China, Math. Biosci., 242 (2013), 51-58.doi: 10.1016/j.mbs.2012.11.012. |
[12] |
Z. Huang, et al., A study on the prevalent type of human Brucellosis caused by $B.suis$ in Guangxi applying fuzzy fathematics and markov forecast, End. Dise. Bul., 5 (1990), 101-105. |
[13] |
M. T. Li, G. Q. Sun, Y. F. Wu, J. Zhang and Z. Jin, Transmission dynamics of a multi-group brucellosis model with mixed cross infection in public farm, Appl. Math. Com., 237 (2014), 582-594.doi: 10.1016/j.amc.2014.03.094. |
[14] |
M. T. Li, G. Q. Sun, J. Zhang and Z. Jin, Global Dynamic Behavior of a Multigroup Cholera model with Indirect Transmission, Discrete Dynamics in Nature and Society, Volume 2013, Article ID 703826. |
[15] |
Z. Li, et al., Application of mathematical models to forecast for inspection district of brucellosis in China (II), Chin. J. Ctrl. Endem. Dis., 15 (2000), 273-275. |
[16] |
A. Lu, et al., Establishment of Brucellosis infection rate forcasting models and their accuracy comparison, Chinese Journal of Animal Health Inspection, 17 (2000), 21-22. |
[17] |
J. C. Mi, Q. H. Zhang, L. T. Song and Z. Zheng, The epidemiological characteristics of human Brucellosis in Inner Mongolia, Chin. J. Ctrl. Endem. Dis., 25 (2010), 34-36. |
[18] |
Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. L. Smith and J. Glenn Morris, Jr., Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA, 108 (2011), 8767-8772. |
[19] |
National bureau of statistics of China (2012) China demographic yearbook of 2012, http://www.stats.gov.cn/tjsj/ndsj/2012/indexch.htm. |
[20] |
S. Niu and R. Liu, Hinggan League 2001-2009 human brucellosis epidemiological analysis, Med. Inform., 3 (2010), 473-474. |
[21] |
G. Pappas, N. Akritidis, M. Bosilkovski and E. Tsianos, Brucellosis, N. Engl. J. Med., 352 (2005), 2325-2536.doi: 10.1056/NEJMra050570. |
[22] |
H. L. Ren, et al., The current research, prevention and control on brucellosis, China Animal Husbandry Veterinary Medicine, 36 (2009), 139-143. |
[23] |
E. J. Richey and C. Dix Harrell, Brucella Abortus Disease (Brucellosis) in Beef Cattle, University of Florida, 100 (1997), 1-6. |
[24] |
M. A. Sanchez and S. M. Blower, Uncertainty and sensitivity analysis of the basic reproductive rate: Tuberculosis as an example, American Journal of Epidemiology, 145 (1997), 1127-1137.doi: 10.1093/oxfordjournals.aje.a009076. |
[25] |
D. Q. Shang, D. L. Xiao and J. M. Yin, Epidemiology and control of brucellosis in China, Vet. Microbiol., 69 (2002), 77 pp. |
[26] |
K. J. Sharkey, R. G. Bowers, K. L. Morgan, S. E. Robinson and R. M. Christley, Epidemiological consequences of an incursion of highly pathogenic H5N1 avian influenza into the British poultry flock, Proc. R. Soc. B, 275 (2008), 19-28.doi: 10.1098/rspb.2007.1100. |
[27] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, 1995.doi: 10.1017/CBO9780511530043. |
[28] |
The 2010 census bulletin of the main data of Hinggan League, http://www.xamtj.gov.cn/tjgg/rkpcgb/138748.htm. |
[29] |
H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.doi: 10.1007/BF00173267. |
[30] |
H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Biosci., 24 (1993), 407-435.doi: 10.1137/0524026. |
[31] |
G. Wang, et al., China livestock brucellosis popular characteristics and cause analysis, Chinese Journal of Animal Health Inspection, 27 (2010), 62-63. |
[32] |
W. D. Wang, P. Fergola and C. Tenneriello, Innovation diffusion model in patch environment, Appl. Math. Com., 134 (2003), 51-67.doi: 10.1016/S0096-3003(01)00268-5. |
[33] |
W. D. Wang and X. Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97-112.doi: 10.1016/j.mbs.2002.11.001. |
[34] |
J. Zhang, Z. Jin, G. Sun, T. Zhou and S. Ruan, Analysis of rabies in China: Tranmission dynamics and control, PLoS ONE, 6 (2011), e20891.doi: 10.1371/journal.pone.0020891. |
[35] |
J. Zhang, Z. Jin, G. Sun, X. Sun and S. Ruan, Modeling seasonal rabies epidemics in China, Bull. Math. Biol., 74 (2012), 1226-1251.doi: 10.1007/s11538-012-9720-6. |
[36] |
S. Y. Zhang and D. Zhu, In review of China brucellosis prevention to 50 years, Chin. J. Ctrl. Endem. Dis., 18 (2003), 275-278. |
[37] |
X. Q. Zhao, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications, Canad. Appl. Math. Quart., 3 (1995), 473-495. |
[38] |
X. Q. Zhao and Z. J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Canad. Appl. Math. Quart., 4 (1996), 421-444. |
[39] |
Y. B. Zhou and X. L. Liu, The research progress in terms of prevalence, incidence reason and control strategies of brucellosis, J. Liaoning Medical University, 1 (2010), 81-85. |
[40] |
J. Zinsstag, F. Roth, D. Orkhon, G. Chimed-Ochir, M. Nansalmaa, J. Kolar and P. Vounatsou, A model of animal-human brucellosis transmission in Mongolia, Prev. Vet. Med., 69 (2005), 77-95.doi: 10.1016/j.prevetmed.2005.01.017. |