• Previous Article
    Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population
  • MBE Home
  • This Issue
  • Next Article
    Transmission dynamics and control for a brucellosis model in Hinggan League of Inner Mongolia, China
2014, 11(5): 1139-1166. doi: 10.3934/mbe.2014.11.1139

On optimization of substrate removal in a bioreactor with wall attached and suspended bacteria

1. 

EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, CH-8600 Dübendorf,, Switzerland

2. 

Biophysics Interdepartmental Program and Department, of Mathematics and Statistics, University of Guelph, Guelph ON, N1G 2W1, Canada

Received  February 2013 Revised  March 2014 Published  June 2014

We investigate the question of optimal substrate removal in a biofilm reactor with concurrent suspended growth, both with respect to the amount of substrate removed and with respect to treatment process duration. The water to be treated is fed externally from a buffer vessel to the treatment reactor. In the two-objective optimal control problem, the flow rate between the vessels is selected as the control variable. The treatment reactor is modelled by a system of three ordinary differential equations in which a two-point boundary value problem is embedded. The solution of the associated singular optimal control problem in the class of measurable functions is impractical to determine and infeasible to implement in real reactors. Instead, we solve the simpler problem to optimize reactor performance in the class of off-on functions, a choice that is motivated by the underlying biological process. These control functions start with an initial no-flow period and then switch to a constant flow rate until the buffer vessel is empty. We approximate the Pareto Front numerically and study the behaviour of the system and its dependence on reactor and initial data. Overall, the modest potential of control strategies to improve reactor performance is found to be primarily due to an initial transient period in which the bacteria have to adapt to the environmental conditions in the reactor, i.e. depends heavily on the initial state of the dynamic system. In applications, the initial state, however, is often unknown and therefore the efficiency of reactor optimization, compared to the uncontrolled system with constant flow rate, is limited.
Citation: Alma Mašić, Hermann J. Eberl. On optimization of substrate removal in a bioreactor with wall attached and suspended bacteria. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1139-1166. doi: 10.3934/mbe.2014.11.1139
References:
[1]

F. Abbas, R. Sudarsan and H. J. Eberl, Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates, Math. Biosc. Eng., 9 (2012), 215-239. doi: 10.3934/mbe.2012.9.215.

[2]

F. Abbas and H. J. Eberl, Analytical substrate flux approximation for the Monod boundary value problem, Appl. Math. Comp., 218 (2011), 1484-1494. doi: 10.1016/j.amc.2011.05.102.

[3]

M. M. Ballyk, D. A. Jones and H. L. Smith, The biofilm model of Freter: A review, in Structured Population Models in Biology and Epidemiology, Lecture Notes in Math., 1936, Springer, Berlin, 2008, 265-302. doi: 10.1007/978-3-540-78273-5_6.

[4]

M. M. Ballyk, D. A. Jones and H. L. Smith, Microbial competition in reactors with wall attachment, Microb. Ecol., 41 (2001), 210-221.

[5]

J. T. Betts, Practical Methods for Optimal Control and Estimation using Nonlinear Programming, SIAM series Adv. Design and Control, Philadelphia, 2010. doi: 10.1137/1.9780898718577.

[6]

C. Carathéodory, Vorlesungen über reelle Funktionen, 3rd edition, Chelsea Publ, 1968.

[7]

N. G. Cogan, B. Szomolay and M. Dindo, Effect of periodic disinfection on persisters in a one-dimensional biofilm model, Bull. Math. Biol., 75 (2013), 94-123. doi: 10.1007/s11538-012-9796-z.

[8]

T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 2nd edition, MIT Press, 2001.

[9]

W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag New York Inc, 1975.

[10]

R. Freter, H. Brickner, J. Fekete, M. Vickerman and K. Carey, Survival and implantation of Escherichia coli in the intestinal tract, Infect. Immun., 39 (1983), 686-703.

[11]

P. Gajardo, J. Harmand, H. Ramírez C. and A. Rapaport, Minimal time bioremediation of natural water resources, Automatica, 47 (2011), 1764-1769. doi: 10.1016/j.automatica.2011.03.001.

[12]

A. Göpfert and R. Nehse, Vektoroptimierung, BSB Teubner Verlagsgesellschaft, Leipzig, 1990.

[13]

E. V. Grigorieva and E. N. Khailov, Minimization of pollution concentration on a given time interval for the waste water cleaning plant, J. Control Sci. Eng. Article, 2010 (2010), 1-10. doi: 10.1155/2010/712794.

[14]

B. Houska, H. J. Ferreau and M. Diehl, ACADO toolkit - An open-source framework for automatic control and dynamic optimization, Optim. Contr. Appl. Met., 32 (2010), 298-312. doi: 10.1002/oca.939.

[15]

I. Ivanovic and T. O. Leiknes, Particle separation in Moving Bed Biofilm Reactor: Applications and opportunities, Separ. Sci. Technol., 47 (2012), 647-653. doi: 10.1080/01496395.2011.639590.

[16]

J. Jahn, Vector Optimization: Theory, Applications and Extensions, 2nd edition, Springer-Verlag, Berlin Heidelberg, 2011. doi: 10.1007/978-3-540-24828-6.

[17]

T. L. Johnson, J. P. McQuarrie and A. R. Shaw, Integrated Fixed-film Activated Sludge (IFAS): The new choice for nitrogen removal upgrades in the United States, Proceedings WEFTEC Session, (2004), 296-318. doi: 10.2175/193864704784147214.

[18]

D. Jones, H. V. Kojouharov, D. Le and H. Smith, The Freter model: A simple model of biofilm formation, J. Math. Biol., 47, (2003), 137-152. doi: 10.1007/s00285-003-0202-1.

[19]

J. B. Kaplan, Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses, J. Dent. Res., 89 (2010), 205-218. doi: 10.1177/0022034509359403.

[20]

I. Klapper, Productivity and equilibrium in simple biofilm models, Bull. Math. Biol., 74 (2012), 2917-2934. doi: 10.1007/s11538-012-9791-4.

[21]

Z. Lewandowski and H. Beyenal, Fundamentals of Biofilm Research, CRC Press, Boca Raton, 2007.

[22]

A. Mašić and H. Eberl, Persistence in a single species CSTR model with suspended flocs and wall attached biofilms, Bull. Math. Biol., 74 (2012), 1001-1026. doi: 10.1007/s11538-011-9707-8.

[23]

A. Mašić and H. Eberl, A modeling and simulation study of the role of suspended microbial populations in nitrification in a biofilm reactor, Bull. Math. Biol., 76 (2014), 27-58. doi: 10.1007/s11538-013-9898-2.

[24]

The Mathworks, MATLAB online documentation, http://www.mathworks.com/help/matlab/, accessed on January 18, 2013.

[25]

J. Moreno, Optimal time control of bioreactors for the wastewater treatment, Optim. Control Appl. Meth., 20 (1999), 145-164.

[26]

E. Morgenroth, M. C. M. van Loosdrecht and O. Wanner, Biofilm models for the practitioner, Water Sci. Technol., 41 (2000), 509-512.

[27]

L. S. Pontryagin, N. G. Boltyanski, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley, New York, 1962.

[28]

B. E. Rittmann and P. L. McCarty, Environmental Biotechnology, McGraw-Hill, New York, 2001.

[29]

M. E. Roberts and X.-M. Zhan, Moving-medium Biofilm Reactors, Rev. Environ. Sci. Biotechnol., 2 (2003), 213-224.

[30]

I. M. Ross, A beginner's guide to DIDO: A MATLAB application package for solving optimal control problems, Elissar Global, Monterey, CA, 2007.

[31]

I. Y. Smets and J. F. Van Impe, Optimal control of (bio-)chemical reactors: Generic properties of time and space dependent optimization, Math. Comput. Simulat., 60 (2002), 475-486. doi: 10.1016/S0378-4754(02)00034-4.

[32]

E. D. Stemmons and H. L. Smith, Competition in a chemostat with wall attachment, SIAM J. Appl. Math., 61 (2000), 567-595. doi: 10.1137/S0036139999358131.

[33]

B. Szomolay, I. Klapper and M. Dindos, Analysis of adaptive response to dosing protocols for biofilm control, SIAM J. Appl. Math., 70 (2010), 3175-3202. doi: 10.1137/080739070.

[34]

M. von Sperling, Activated Sludge and Aerobic Biofilm Reactors, IWA Publishing, London, 2007.

[35]

W. Walter, Gewöhnliche Differentialgleichungen, 7th ed., Springer, 2000. doi: 10.1007/978-3-642-57240-1.

[36]

O. Wanner, H. Eberl, E. Morgenroth, D. R. Noguera, C. Picioreanu, B. Rittmann and M. van Loosdrecht, Mathematical Modeling of Biofilms, Scientific and Technical Report No.18, IWA Publishing, 2006.

[37]

M. I. Zelikin and V. F. Borisov, Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering, Systems & Control: Foundations & Applications, Birkhäuser Boston, 1994. doi: 10.1007/978-1-4612-2702-1.

show all references

References:
[1]

F. Abbas, R. Sudarsan and H. J. Eberl, Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates, Math. Biosc. Eng., 9 (2012), 215-239. doi: 10.3934/mbe.2012.9.215.

[2]

F. Abbas and H. J. Eberl, Analytical substrate flux approximation for the Monod boundary value problem, Appl. Math. Comp., 218 (2011), 1484-1494. doi: 10.1016/j.amc.2011.05.102.

[3]

M. M. Ballyk, D. A. Jones and H. L. Smith, The biofilm model of Freter: A review, in Structured Population Models in Biology and Epidemiology, Lecture Notes in Math., 1936, Springer, Berlin, 2008, 265-302. doi: 10.1007/978-3-540-78273-5_6.

[4]

M. M. Ballyk, D. A. Jones and H. L. Smith, Microbial competition in reactors with wall attachment, Microb. Ecol., 41 (2001), 210-221.

[5]

J. T. Betts, Practical Methods for Optimal Control and Estimation using Nonlinear Programming, SIAM series Adv. Design and Control, Philadelphia, 2010. doi: 10.1137/1.9780898718577.

[6]

C. Carathéodory, Vorlesungen über reelle Funktionen, 3rd edition, Chelsea Publ, 1968.

[7]

N. G. Cogan, B. Szomolay and M. Dindo, Effect of periodic disinfection on persisters in a one-dimensional biofilm model, Bull. Math. Biol., 75 (2013), 94-123. doi: 10.1007/s11538-012-9796-z.

[8]

T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 2nd edition, MIT Press, 2001.

[9]

W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag New York Inc, 1975.

[10]

R. Freter, H. Brickner, J. Fekete, M. Vickerman and K. Carey, Survival and implantation of Escherichia coli in the intestinal tract, Infect. Immun., 39 (1983), 686-703.

[11]

P. Gajardo, J. Harmand, H. Ramírez C. and A. Rapaport, Minimal time bioremediation of natural water resources, Automatica, 47 (2011), 1764-1769. doi: 10.1016/j.automatica.2011.03.001.

[12]

A. Göpfert and R. Nehse, Vektoroptimierung, BSB Teubner Verlagsgesellschaft, Leipzig, 1990.

[13]

E. V. Grigorieva and E. N. Khailov, Minimization of pollution concentration on a given time interval for the waste water cleaning plant, J. Control Sci. Eng. Article, 2010 (2010), 1-10. doi: 10.1155/2010/712794.

[14]

B. Houska, H. J. Ferreau and M. Diehl, ACADO toolkit - An open-source framework for automatic control and dynamic optimization, Optim. Contr. Appl. Met., 32 (2010), 298-312. doi: 10.1002/oca.939.

[15]

I. Ivanovic and T. O. Leiknes, Particle separation in Moving Bed Biofilm Reactor: Applications and opportunities, Separ. Sci. Technol., 47 (2012), 647-653. doi: 10.1080/01496395.2011.639590.

[16]

J. Jahn, Vector Optimization: Theory, Applications and Extensions, 2nd edition, Springer-Verlag, Berlin Heidelberg, 2011. doi: 10.1007/978-3-540-24828-6.

[17]

T. L. Johnson, J. P. McQuarrie and A. R. Shaw, Integrated Fixed-film Activated Sludge (IFAS): The new choice for nitrogen removal upgrades in the United States, Proceedings WEFTEC Session, (2004), 296-318. doi: 10.2175/193864704784147214.

[18]

D. Jones, H. V. Kojouharov, D. Le and H. Smith, The Freter model: A simple model of biofilm formation, J. Math. Biol., 47, (2003), 137-152. doi: 10.1007/s00285-003-0202-1.

[19]

J. B. Kaplan, Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses, J. Dent. Res., 89 (2010), 205-218. doi: 10.1177/0022034509359403.

[20]

I. Klapper, Productivity and equilibrium in simple biofilm models, Bull. Math. Biol., 74 (2012), 2917-2934. doi: 10.1007/s11538-012-9791-4.

[21]

Z. Lewandowski and H. Beyenal, Fundamentals of Biofilm Research, CRC Press, Boca Raton, 2007.

[22]

A. Mašić and H. Eberl, Persistence in a single species CSTR model with suspended flocs and wall attached biofilms, Bull. Math. Biol., 74 (2012), 1001-1026. doi: 10.1007/s11538-011-9707-8.

[23]

A. Mašić and H. Eberl, A modeling and simulation study of the role of suspended microbial populations in nitrification in a biofilm reactor, Bull. Math. Biol., 76 (2014), 27-58. doi: 10.1007/s11538-013-9898-2.

[24]

The Mathworks, MATLAB online documentation, http://www.mathworks.com/help/matlab/, accessed on January 18, 2013.

[25]

J. Moreno, Optimal time control of bioreactors for the wastewater treatment, Optim. Control Appl. Meth., 20 (1999), 145-164.

[26]

E. Morgenroth, M. C. M. van Loosdrecht and O. Wanner, Biofilm models for the practitioner, Water Sci. Technol., 41 (2000), 509-512.

[27]

L. S. Pontryagin, N. G. Boltyanski, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley, New York, 1962.

[28]

B. E. Rittmann and P. L. McCarty, Environmental Biotechnology, McGraw-Hill, New York, 2001.

[29]

M. E. Roberts and X.-M. Zhan, Moving-medium Biofilm Reactors, Rev. Environ. Sci. Biotechnol., 2 (2003), 213-224.

[30]

I. M. Ross, A beginner's guide to DIDO: A MATLAB application package for solving optimal control problems, Elissar Global, Monterey, CA, 2007.

[31]

I. Y. Smets and J. F. Van Impe, Optimal control of (bio-)chemical reactors: Generic properties of time and space dependent optimization, Math. Comput. Simulat., 60 (2002), 475-486. doi: 10.1016/S0378-4754(02)00034-4.

[32]

E. D. Stemmons and H. L. Smith, Competition in a chemostat with wall attachment, SIAM J. Appl. Math., 61 (2000), 567-595. doi: 10.1137/S0036139999358131.

[33]

B. Szomolay, I. Klapper and M. Dindos, Analysis of adaptive response to dosing protocols for biofilm control, SIAM J. Appl. Math., 70 (2010), 3175-3202. doi: 10.1137/080739070.

[34]

M. von Sperling, Activated Sludge and Aerobic Biofilm Reactors, IWA Publishing, London, 2007.

[35]

W. Walter, Gewöhnliche Differentialgleichungen, 7th ed., Springer, 2000. doi: 10.1007/978-3-642-57240-1.

[36]

O. Wanner, H. Eberl, E. Morgenroth, D. R. Noguera, C. Picioreanu, B. Rittmann and M. van Loosdrecht, Mathematical Modeling of Biofilms, Scientific and Technical Report No.18, IWA Publishing, 2006.

[37]

M. I. Zelikin and V. F. Borisov, Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering, Systems & Control: Foundations & Applications, Birkhäuser Boston, 1994. doi: 10.1007/978-1-4612-2702-1.

[1]

Mudassar Imran, Hal L. Smith. A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences & Engineering, 2014, 11 (3) : 547-571. doi: 10.3934/mbe.2014.11.547

[2]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[3]

Jian Lu, Lixin Shen, Chen Xu, Yuesheng Xu. Multiplicative noise removal with a sparsity-aware optimization model. Inverse Problems and Imaging, 2017, 11 (6) : 949-974. doi: 10.3934/ipi.2017044

[4]

Ning Chen, Yan Xia Zhao, Jia Yang Dai, Yu Qian Guo, Wei Hua Gui, Jun Jie Peng. Hybrid modeling and distributed optimization control method for the iron removal process. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022003

[5]

Carmen Chicone, Stephen J. Lombardo, David G. Retzloff. Modeling, approximation, and time optimal temperature control for binder removal from ceramics. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 103-140. doi: 10.3934/dcdsb.2021034

[6]

Evans K. Afenya, Calixto P. Calderón. Growth kinetics of cancer cells prior to detection and treatment: An alternative view. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 25-28. doi: 10.3934/dcdsb.2004.4.25

[7]

Nikodem J. Poplawski, Abbas Shirinifard, Maciej Swat, James A. Glazier. Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Mathematical Biosciences & Engineering, 2008, 5 (2) : 355-388. doi: 10.3934/mbe.2008.5.355

[8]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[9]

Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control and Related Fields, 2020, 10 (2) : 305-331. doi: 10.3934/mcrf.2019040

[10]

Messoud A. Efendiev, Sergey Zelik, Hermann J. Eberl. Existence and longtime behavior of a biofilm model. Communications on Pure and Applied Analysis, 2009, 8 (2) : 509-531. doi: 10.3934/cpaa.2009.8.509

[11]

Mohamed Dellal, Bachir Bar, Mustapha Lakrib. A competition model in the chemostat with allelopathy and substrate inhibition. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2025-2050. doi: 10.3934/dcdsb.2021120

[12]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[13]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[14]

Joon Kwon, Panayotis Mertikopoulos. A continuous-time approach to online optimization. Journal of Dynamics and Games, 2017, 4 (2) : 125-148. doi: 10.3934/jdg.2017008

[15]

Tao Pang, Azmat Hussain. An infinite time horizon portfolio optimization model with delays. Mathematical Control and Related Fields, 2016, 6 (4) : 629-651. doi: 10.3934/mcrf.2016018

[16]

Brandon Lindley, Qi Wang, Tianyu Zhang. A multicomponent model for biofilm-drug interaction. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 417-456. doi: 10.3934/dcdsb.2011.15.417

[17]

Hermann J. Eberl, Messoud A. Efendiev, Dariusz Wrzosek, Anna Zhigun. Analysis of a degenerate biofilm model with a nutrient taxis term. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 99-119. doi: 10.3934/dcds.2014.34.99

[18]

Guy Katriel. Existence of periodic solutions for enzyme-catalysed reactions with periodic substrate input. Conference Publications, 2007, 2007 (Special) : 551-557. doi: 10.3934/proc.2007.2007.551

[19]

Ahuod Alsheri, Ebraheem O. Alzahrani, Asim Asiri, Mohamed M. El-Dessoky, Yang Kuang. Tumor growth dynamics with nutrient limitation and cell proliferation time delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3771-3782. doi: 10.3934/dcdsb.2017189

[20]

Marie Doumic, Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinetic and Related Models, 2016, 9 (2) : 251-297. doi: 10.3934/krm.2016.9.251

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]