• Previous Article
    Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population
  • MBE Home
  • This Issue
  • Next Article
    Transmission dynamics and control for a brucellosis model in Hinggan League of Inner Mongolia, China
2014, 11(5): 1139-1166. doi: 10.3934/mbe.2014.11.1139

On optimization of substrate removal in a bioreactor with wall attached and suspended bacteria

1. 

EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, CH-8600 Dübendorf,, Switzerland

2. 

Biophysics Interdepartmental Program and Department, of Mathematics and Statistics, University of Guelph, Guelph ON, N1G 2W1, Canada

Received  February 2013 Revised  March 2014 Published  June 2014

We investigate the question of optimal substrate removal in a biofilm reactor with concurrent suspended growth, both with respect to the amount of substrate removed and with respect to treatment process duration. The water to be treated is fed externally from a buffer vessel to the treatment reactor. In the two-objective optimal control problem, the flow rate between the vessels is selected as the control variable. The treatment reactor is modelled by a system of three ordinary differential equations in which a two-point boundary value problem is embedded. The solution of the associated singular optimal control problem in the class of measurable functions is impractical to determine and infeasible to implement in real reactors. Instead, we solve the simpler problem to optimize reactor performance in the class of off-on functions, a choice that is motivated by the underlying biological process. These control functions start with an initial no-flow period and then switch to a constant flow rate until the buffer vessel is empty. We approximate the Pareto Front numerically and study the behaviour of the system and its dependence on reactor and initial data. Overall, the modest potential of control strategies to improve reactor performance is found to be primarily due to an initial transient period in which the bacteria have to adapt to the environmental conditions in the reactor, i.e. depends heavily on the initial state of the dynamic system. In applications, the initial state, however, is often unknown and therefore the efficiency of reactor optimization, compared to the uncontrolled system with constant flow rate, is limited.
Citation: Alma Mašić, Hermann J. Eberl. On optimization of substrate removal in a bioreactor with wall attached and suspended bacteria. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1139-1166. doi: 10.3934/mbe.2014.11.1139
References:
[1]

F. Abbas, R. Sudarsan and H. J. Eberl, Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates,, Math. Biosc. Eng., 9 (2012), 215.  doi: 10.3934/mbe.2012.9.215.  Google Scholar

[2]

F. Abbas and H. J. Eberl, Analytical substrate flux approximation for the Monod boundary value problem,, Appl. Math. Comp., 218 (2011), 1484.  doi: 10.1016/j.amc.2011.05.102.  Google Scholar

[3]

M. M. Ballyk, D. A. Jones and H. L. Smith, The biofilm model of Freter: A review,, in Structured Population Models in Biology and Epidemiology, (1936), 265.  doi: 10.1007/978-3-540-78273-5_6.  Google Scholar

[4]

M. M. Ballyk, D. A. Jones and H. L. Smith, Microbial competition in reactors with wall attachment,, Microb. Ecol., 41 (2001), 210.   Google Scholar

[5]

J. T. Betts, Practical Methods for Optimal Control and Estimation using Nonlinear Programming,, SIAM series Adv. Design and Control, (2010).  doi: 10.1137/1.9780898718577.  Google Scholar

[6]

C. Carathéodory, Vorlesungen über reelle Funktionen,, 3rd edition, (1968).   Google Scholar

[7]

N. G. Cogan, B. Szomolay and M. Dindo, Effect of periodic disinfection on persisters in a one-dimensional biofilm model,, Bull. Math. Biol., 75 (2013), 94.  doi: 10.1007/s11538-012-9796-z.  Google Scholar

[8]

T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms,, 2nd edition, (2001).   Google Scholar

[9]

W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control,, Springer-Verlag New York Inc, (1975).   Google Scholar

[10]

R. Freter, H. Brickner, J. Fekete, M. Vickerman and K. Carey, Survival and implantation of Escherichia coli in the intestinal tract,, Infect. Immun., 39 (1983), 686.   Google Scholar

[11]

P. Gajardo, J. Harmand, H. Ramírez C. and A. Rapaport, Minimal time bioremediation of natural water resources,, Automatica, 47 (2011), 1764.  doi: 10.1016/j.automatica.2011.03.001.  Google Scholar

[12]

A. Göpfert and R. Nehse, Vektoroptimierung,, BSB Teubner Verlagsgesellschaft, (1990).   Google Scholar

[13]

E. V. Grigorieva and E. N. Khailov, Minimization of pollution concentration on a given time interval for the waste water cleaning plant,, J. Control Sci. Eng. Article, 2010 (2010), 1.  doi: 10.1155/2010/712794.  Google Scholar

[14]

B. Houska, H. J. Ferreau and M. Diehl, ACADO toolkit - An open-source framework for automatic control and dynamic optimization,, Optim. Contr. Appl. Met., 32 (2010), 298.  doi: 10.1002/oca.939.  Google Scholar

[15]

I. Ivanovic and T. O. Leiknes, Particle separation in Moving Bed Biofilm Reactor: Applications and opportunities,, Separ. Sci. Technol., 47 (2012), 647.  doi: 10.1080/01496395.2011.639590.  Google Scholar

[16]

J. Jahn, Vector Optimization: Theory, Applications and Extensions,, 2nd edition, (2011).  doi: 10.1007/978-3-540-24828-6.  Google Scholar

[17]

T. L. Johnson, J. P. McQuarrie and A. R. Shaw, Integrated Fixed-film Activated Sludge (IFAS): The new choice for nitrogen removal upgrades in the United States,, Proceedings WEFTEC Session, (2004), 296.  doi: 10.2175/193864704784147214.  Google Scholar

[18]

D. Jones, H. V. Kojouharov, D. Le and H. Smith, The Freter model: A simple model of biofilm formation,, J. Math. Biol., 47 (2003), 137.  doi: 10.1007/s00285-003-0202-1.  Google Scholar

[19]

J. B. Kaplan, Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses,, J. Dent. Res., 89 (2010), 205.  doi: 10.1177/0022034509359403.  Google Scholar

[20]

I. Klapper, Productivity and equilibrium in simple biofilm models,, Bull. Math. Biol., 74 (2012), 2917.  doi: 10.1007/s11538-012-9791-4.  Google Scholar

[21]

Z. Lewandowski and H. Beyenal, Fundamentals of Biofilm Research,, CRC Press, (2007).   Google Scholar

[22]

A. Mašić and H. Eberl, Persistence in a single species CSTR model with suspended flocs and wall attached biofilms,, Bull. Math. Biol., 74 (2012), 1001.  doi: 10.1007/s11538-011-9707-8.  Google Scholar

[23]

A. Mašić and H. Eberl, A modeling and simulation study of the role of suspended microbial populations in nitrification in a biofilm reactor,, Bull. Math. Biol., 76 (2014), 27.  doi: 10.1007/s11538-013-9898-2.  Google Scholar

[24]

The Mathworks, MATLAB online documentation, http://www.mathworks.com/help/matlab/,, accessed on January 18, (2013).   Google Scholar

[25]

J. Moreno, Optimal time control of bioreactors for the wastewater treatment,, Optim. Control Appl. Meth., 20 (1999), 145.   Google Scholar

[26]

E. Morgenroth, M. C. M. van Loosdrecht and O. Wanner, Biofilm models for the practitioner,, Water Sci. Technol., 41 (2000), 509.   Google Scholar

[27]

L. S. Pontryagin, N. G. Boltyanski, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes,, Wiley, (1962).   Google Scholar

[28]

B. E. Rittmann and P. L. McCarty, Environmental Biotechnology,, McGraw-Hill, (2001).   Google Scholar

[29]

M. E. Roberts and X.-M. Zhan, Moving-medium Biofilm Reactors,, Rev. Environ. Sci. Biotechnol., 2 (2003), 213.   Google Scholar

[30]

I. M. Ross, A beginner's guide to DIDO: A MATLAB application package for solving optimal control problems,, Elissar Global, (2007).   Google Scholar

[31]

I. Y. Smets and J. F. Van Impe, Optimal control of (bio-)chemical reactors: Generic properties of time and space dependent optimization,, Math. Comput. Simulat., 60 (2002), 475.  doi: 10.1016/S0378-4754(02)00034-4.  Google Scholar

[32]

E. D. Stemmons and H. L. Smith, Competition in a chemostat with wall attachment,, SIAM J. Appl. Math., 61 (2000), 567.  doi: 10.1137/S0036139999358131.  Google Scholar

[33]

B. Szomolay, I. Klapper and M. Dindos, Analysis of adaptive response to dosing protocols for biofilm control,, SIAM J. Appl. Math., 70 (2010), 3175.  doi: 10.1137/080739070.  Google Scholar

[34]

M. von Sperling, Activated Sludge and Aerobic Biofilm Reactors,, IWA Publishing, (2007).   Google Scholar

[35]

W. Walter, Gewöhnliche Differentialgleichungen,, 7th ed., (2000).  doi: 10.1007/978-3-642-57240-1.  Google Scholar

[36]

O. Wanner, H. Eberl, E. Morgenroth, D. R. Noguera, C. Picioreanu, B. Rittmann and M. van Loosdrecht, Mathematical Modeling of Biofilms,, Scientific and Technical Report No.18, (2006).   Google Scholar

[37]

M. I. Zelikin and V. F. Borisov, Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering,, Systems & Control: Foundations & Applications, (1994).  doi: 10.1007/978-1-4612-2702-1.  Google Scholar

show all references

References:
[1]

F. Abbas, R. Sudarsan and H. J. Eberl, Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates,, Math. Biosc. Eng., 9 (2012), 215.  doi: 10.3934/mbe.2012.9.215.  Google Scholar

[2]

F. Abbas and H. J. Eberl, Analytical substrate flux approximation for the Monod boundary value problem,, Appl. Math. Comp., 218 (2011), 1484.  doi: 10.1016/j.amc.2011.05.102.  Google Scholar

[3]

M. M. Ballyk, D. A. Jones and H. L. Smith, The biofilm model of Freter: A review,, in Structured Population Models in Biology and Epidemiology, (1936), 265.  doi: 10.1007/978-3-540-78273-5_6.  Google Scholar

[4]

M. M. Ballyk, D. A. Jones and H. L. Smith, Microbial competition in reactors with wall attachment,, Microb. Ecol., 41 (2001), 210.   Google Scholar

[5]

J. T. Betts, Practical Methods for Optimal Control and Estimation using Nonlinear Programming,, SIAM series Adv. Design and Control, (2010).  doi: 10.1137/1.9780898718577.  Google Scholar

[6]

C. Carathéodory, Vorlesungen über reelle Funktionen,, 3rd edition, (1968).   Google Scholar

[7]

N. G. Cogan, B. Szomolay and M. Dindo, Effect of periodic disinfection on persisters in a one-dimensional biofilm model,, Bull. Math. Biol., 75 (2013), 94.  doi: 10.1007/s11538-012-9796-z.  Google Scholar

[8]

T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms,, 2nd edition, (2001).   Google Scholar

[9]

W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control,, Springer-Verlag New York Inc, (1975).   Google Scholar

[10]

R. Freter, H. Brickner, J. Fekete, M. Vickerman and K. Carey, Survival and implantation of Escherichia coli in the intestinal tract,, Infect. Immun., 39 (1983), 686.   Google Scholar

[11]

P. Gajardo, J. Harmand, H. Ramírez C. and A. Rapaport, Minimal time bioremediation of natural water resources,, Automatica, 47 (2011), 1764.  doi: 10.1016/j.automatica.2011.03.001.  Google Scholar

[12]

A. Göpfert and R. Nehse, Vektoroptimierung,, BSB Teubner Verlagsgesellschaft, (1990).   Google Scholar

[13]

E. V. Grigorieva and E. N. Khailov, Minimization of pollution concentration on a given time interval for the waste water cleaning plant,, J. Control Sci. Eng. Article, 2010 (2010), 1.  doi: 10.1155/2010/712794.  Google Scholar

[14]

B. Houska, H. J. Ferreau and M. Diehl, ACADO toolkit - An open-source framework for automatic control and dynamic optimization,, Optim. Contr. Appl. Met., 32 (2010), 298.  doi: 10.1002/oca.939.  Google Scholar

[15]

I. Ivanovic and T. O. Leiknes, Particle separation in Moving Bed Biofilm Reactor: Applications and opportunities,, Separ. Sci. Technol., 47 (2012), 647.  doi: 10.1080/01496395.2011.639590.  Google Scholar

[16]

J. Jahn, Vector Optimization: Theory, Applications and Extensions,, 2nd edition, (2011).  doi: 10.1007/978-3-540-24828-6.  Google Scholar

[17]

T. L. Johnson, J. P. McQuarrie and A. R. Shaw, Integrated Fixed-film Activated Sludge (IFAS): The new choice for nitrogen removal upgrades in the United States,, Proceedings WEFTEC Session, (2004), 296.  doi: 10.2175/193864704784147214.  Google Scholar

[18]

D. Jones, H. V. Kojouharov, D. Le and H. Smith, The Freter model: A simple model of biofilm formation,, J. Math. Biol., 47 (2003), 137.  doi: 10.1007/s00285-003-0202-1.  Google Scholar

[19]

J. B. Kaplan, Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses,, J. Dent. Res., 89 (2010), 205.  doi: 10.1177/0022034509359403.  Google Scholar

[20]

I. Klapper, Productivity and equilibrium in simple biofilm models,, Bull. Math. Biol., 74 (2012), 2917.  doi: 10.1007/s11538-012-9791-4.  Google Scholar

[21]

Z. Lewandowski and H. Beyenal, Fundamentals of Biofilm Research,, CRC Press, (2007).   Google Scholar

[22]

A. Mašić and H. Eberl, Persistence in a single species CSTR model with suspended flocs and wall attached biofilms,, Bull. Math. Biol., 74 (2012), 1001.  doi: 10.1007/s11538-011-9707-8.  Google Scholar

[23]

A. Mašić and H. Eberl, A modeling and simulation study of the role of suspended microbial populations in nitrification in a biofilm reactor,, Bull. Math. Biol., 76 (2014), 27.  doi: 10.1007/s11538-013-9898-2.  Google Scholar

[24]

The Mathworks, MATLAB online documentation, http://www.mathworks.com/help/matlab/,, accessed on January 18, (2013).   Google Scholar

[25]

J. Moreno, Optimal time control of bioreactors for the wastewater treatment,, Optim. Control Appl. Meth., 20 (1999), 145.   Google Scholar

[26]

E. Morgenroth, M. C. M. van Loosdrecht and O. Wanner, Biofilm models for the practitioner,, Water Sci. Technol., 41 (2000), 509.   Google Scholar

[27]

L. S. Pontryagin, N. G. Boltyanski, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes,, Wiley, (1962).   Google Scholar

[28]

B. E. Rittmann and P. L. McCarty, Environmental Biotechnology,, McGraw-Hill, (2001).   Google Scholar

[29]

M. E. Roberts and X.-M. Zhan, Moving-medium Biofilm Reactors,, Rev. Environ. Sci. Biotechnol., 2 (2003), 213.   Google Scholar

[30]

I. M. Ross, A beginner's guide to DIDO: A MATLAB application package for solving optimal control problems,, Elissar Global, (2007).   Google Scholar

[31]

I. Y. Smets and J. F. Van Impe, Optimal control of (bio-)chemical reactors: Generic properties of time and space dependent optimization,, Math. Comput. Simulat., 60 (2002), 475.  doi: 10.1016/S0378-4754(02)00034-4.  Google Scholar

[32]

E. D. Stemmons and H. L. Smith, Competition in a chemostat with wall attachment,, SIAM J. Appl. Math., 61 (2000), 567.  doi: 10.1137/S0036139999358131.  Google Scholar

[33]

B. Szomolay, I. Klapper and M. Dindos, Analysis of adaptive response to dosing protocols for biofilm control,, SIAM J. Appl. Math., 70 (2010), 3175.  doi: 10.1137/080739070.  Google Scholar

[34]

M. von Sperling, Activated Sludge and Aerobic Biofilm Reactors,, IWA Publishing, (2007).   Google Scholar

[35]

W. Walter, Gewöhnliche Differentialgleichungen,, 7th ed., (2000).  doi: 10.1007/978-3-642-57240-1.  Google Scholar

[36]

O. Wanner, H. Eberl, E. Morgenroth, D. R. Noguera, C. Picioreanu, B. Rittmann and M. van Loosdrecht, Mathematical Modeling of Biofilms,, Scientific and Technical Report No.18, (2006).   Google Scholar

[37]

M. I. Zelikin and V. F. Borisov, Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering,, Systems & Control: Foundations & Applications, (1994).  doi: 10.1007/978-1-4612-2702-1.  Google Scholar

[1]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[2]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[3]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[4]

Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021010

[5]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[6]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[9]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[10]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[13]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[14]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[15]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[16]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[17]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[18]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[19]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[20]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]