2014, 11(5): 1167-1174. doi: 10.3934/mbe.2014.11.1167

Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population

1. 

Department of Higher Mathematics, Donetsk State University of Management, Chelyuskintsev str., 163-a, Donetsk, 83015

Received  February 2014 Revised  March 2014 Published  June 2014

The known nonlinear mathematical model of the Glassy-winged Sharpshooter is considered. It is assumed that this model is influenced by stochastic perturbations of the white noise type and these perturbations are directly proportional to the deviation of the system state from the positive equilibrium point. A necessary and sufficient condition for asymptotic mean square stability of the equilibrium point of the linear part of the considered stochastic differential equation is obtained. This condition is at the same time a sufficient one for stability in probability of the equilibrium point of the initial nonlinear equation. Numerical calculations and figures illustrate the obtained results.
Citation: Leonid Shaikhet. Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1167-1174. doi: 10.3934/mbe.2014.11.1167
References:
[1]

M. Bandyopadhyay and J. Chattopadhyay, Ratio dependent predator-prey model: Effect of environmental fluctuation and stability,, Nonlinearity, 18 (2005), 913.  doi: 10.1088/0951-7715/18/2/022.  Google Scholar

[2]

E. Beretta, V. Kolmanovskii and L. Shaikhet, Stability of epidemic model with time delays influenced by stochastic perturbations,, Mathematics and Computers in Simulation (Special Issue, 45 (1998), 269.  doi: 10.1016/S0378-4754(97)00106-7.  Google Scholar

[3]

N. Bradul and L. Shaikhet, Stability of the positive point of equilibrium of Nicholson's blowflies equation with stochastic perturbations: Numerical analysis,, Discrete Dynamics in Nature and Society, 2007 (2007).  doi: 10.1155/2007/92959.  Google Scholar

[4]

M. Carletti, On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment,, Mathematical Biosciences, 175 (2002), 117.  doi: 10.1016/S0025-5564(01)00089-X.  Google Scholar

[5]

I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations,, Springer-Verlag, (1972).   Google Scholar

[6]

M. Jovanovic and M. Krstic, Stochastically perturbed vector-borne disease models with direct transmission,, Applied Mathematical Modelling, 36 (2012), 5214.  doi: 10.1016/j.apm.2011.11.087.  Google Scholar

[7]

B. Mukhopadhyay and R. Bhattacharyya, A nonlinear mathematical model of virus-tumor-immune system interaction: Deterministic and stochastic analysis,, Stochastic Analysis and Applications, 27 (2009), 409.  doi: 10.1080/07362990802679067.  Google Scholar

[8]

R. R. Sarkar and S. Banerjee, Cancer self remission and tumor stability - a stochastic approach,, Mathematical Biosciences, 196 (2005), 65.  doi: 10.1016/j.mbs.2005.04.001.  Google Scholar

[9]

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Difference Equations,, Springer, (2011).  doi: 10.1007/978-0-85729-685-6.  Google Scholar

[10]

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional Differential Equations,, Springer, (2013).  doi: 10.1007/978-3-319-00101-2.  Google Scholar

[11]

J. Yoon, V. Hrynkiv, L. Morano A. Nguyen, S. Wilder and F. Mitchell, Mathematical modeling of Glassy-winged sharpshooter population,, Mathematical Biosciences and Engineering, 11 (2014), 667.  doi: 10.3934/mbe.2014.11.667.  Google Scholar

show all references

References:
[1]

M. Bandyopadhyay and J. Chattopadhyay, Ratio dependent predator-prey model: Effect of environmental fluctuation and stability,, Nonlinearity, 18 (2005), 913.  doi: 10.1088/0951-7715/18/2/022.  Google Scholar

[2]

E. Beretta, V. Kolmanovskii and L. Shaikhet, Stability of epidemic model with time delays influenced by stochastic perturbations,, Mathematics and Computers in Simulation (Special Issue, 45 (1998), 269.  doi: 10.1016/S0378-4754(97)00106-7.  Google Scholar

[3]

N. Bradul and L. Shaikhet, Stability of the positive point of equilibrium of Nicholson's blowflies equation with stochastic perturbations: Numerical analysis,, Discrete Dynamics in Nature and Society, 2007 (2007).  doi: 10.1155/2007/92959.  Google Scholar

[4]

M. Carletti, On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment,, Mathematical Biosciences, 175 (2002), 117.  doi: 10.1016/S0025-5564(01)00089-X.  Google Scholar

[5]

I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations,, Springer-Verlag, (1972).   Google Scholar

[6]

M. Jovanovic and M. Krstic, Stochastically perturbed vector-borne disease models with direct transmission,, Applied Mathematical Modelling, 36 (2012), 5214.  doi: 10.1016/j.apm.2011.11.087.  Google Scholar

[7]

B. Mukhopadhyay and R. Bhattacharyya, A nonlinear mathematical model of virus-tumor-immune system interaction: Deterministic and stochastic analysis,, Stochastic Analysis and Applications, 27 (2009), 409.  doi: 10.1080/07362990802679067.  Google Scholar

[8]

R. R. Sarkar and S. Banerjee, Cancer self remission and tumor stability - a stochastic approach,, Mathematical Biosciences, 196 (2005), 65.  doi: 10.1016/j.mbs.2005.04.001.  Google Scholar

[9]

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Difference Equations,, Springer, (2011).  doi: 10.1007/978-0-85729-685-6.  Google Scholar

[10]

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional Differential Equations,, Springer, (2013).  doi: 10.1007/978-3-319-00101-2.  Google Scholar

[11]

J. Yoon, V. Hrynkiv, L. Morano A. Nguyen, S. Wilder and F. Mitchell, Mathematical modeling of Glassy-winged sharpshooter population,, Mathematical Biosciences and Engineering, 11 (2014), 667.  doi: 10.3934/mbe.2014.11.667.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[6]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[7]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[8]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[11]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[12]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[13]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[14]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[15]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[16]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[17]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[18]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[19]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[20]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]