
Previous Article
Disease dynamics for the hometown of migrant workers
 MBE Home
 This Issue

Next Article
Effect of residual stress on peak cap stress in arteries
Impact of delay on HIV1 dynamics of fighting a virus with another virus
1.  Department of Applied Mathematics, Western University, London, Ontario N6A 5B7, Canada, Canada, Canada 
References:
[1] 
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters,, SIAM J. Math. Anal., 33 (2002), 1144. doi: 10.1137/S0036141000376086. 
[2] 
S. Busenberg and K. Cooke, Vertically Transmitted Diseases: Models and Dynamics,, Springer, (1993). doi: 10.1007/9783642753015. 
[3] 
F. Gantmacher, The Theory of Matrices,, Vol. 2, (). 
[4] 
J. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations,, SpringerVerlag, (1993). doi: 10.1007/9781461243427. 
[5] 
B. D. Hassard, N. D. Kazarinoff and Y.H. Wan, Theory and Applications of Hopf Bifurcation,, Cambridge University Press, (1981). 
[6] 
X. Jiang, P. Yu, Z. Yuan and X. Zou, Dynamics of an HIV1 therapy model of fighting a virus with another virus,, Journal of Biological Dynamics, 3 (2009), 387. doi: 10.1080/17513750802485007. 
[7] 
T. Kajiwara, T. Saraki and Y. Takeuchi, Construction of lyapunov functionals for delay differential equations in virology and epidemiology,, Nonlinear Analysis: Real World Applications, 13 (2012), 1802. doi: 10.1016/j.nonrwa.2011.12.011. 
[8] 
J. LaSalle, The Stability of Dynamical Systems,, SIAM, (1976). 
[9] 
C. Michie, A. McLean, C. Alcock and P. Beverly, Lifespan of human lymphocyte subsets defined by cd45 isoforms,, Nature, 360 (1992), 264. doi: 10.1038/360264a0. 
[10] 
J. Mittler, B. Sulzer, A. Neumann and A. Perelson, Influence of delayed virus production on viral dynamics in HIV1 infected patients,, Math. Biosci., 152 (1998), 143. 
[11] 
P. W. Nelson, J. D. Murray and A. S. Perelson, A model of HIV1 pathogenesis that includes an intracellular delay,, Mathematical Biosciences, 163 (2000), 201. doi: 10.1016/S00255564(99)000553. 
[12] 
G. Nolan, Harnessing viral devices as pharmaceuticals: Fighting HIV1s fire with fire,, Cell, 90 (1997), 821. 
[13] 
T. Revilla and G. GarcíaRamos, Fighting a virus with a virus: A dynamic model for HIV1 therapy,, Math. Biosci., 185 (2003), 191. doi: 10.1016/S00255564(03)000919. 
[14] 
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995). 
[15] 
E. Wagner and M. Hewlett, Basic Virology,, Blackwell, (1999). 
[16] 
P. Yu, Y. Ding and W. Jiang, Equivalence of MTS method and CMR method for delay differential equations associated with semisimple singularity,, Int. J. Bifurcation and Chaos, 24 (2014). doi: 10.1142/S0218127414500035. 
[17] 
P. Yu and X. Zou, Bifurcation analysis on an HIV1 Model with constant injection of recombinant,, Int. J. Bifurcation and Chaos, 22 (2012). doi: 10.1142/S0218127412500629. 
[18] 
H. Zhu and X. Zou, Impact of delays in cell infection and virus production on HIV1 dynamics,, Math. Medic. Bio., 25 (2008), 99. doi: 10.1093/imammb/dqm010. 
[19] 
H. Zhu and X. Zou, Dynamics of a HIV1 infection model with cellmediated immune response and intracellular delay,, Disc. Cont. Dyan. Syst. B., 12 (2009), 511. doi: 10.3934/dcdsb.2009.12.511. 
show all references
References:
[1] 
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters,, SIAM J. Math. Anal., 33 (2002), 1144. doi: 10.1137/S0036141000376086. 
[2] 
S. Busenberg and K. Cooke, Vertically Transmitted Diseases: Models and Dynamics,, Springer, (1993). doi: 10.1007/9783642753015. 
[3] 
F. Gantmacher, The Theory of Matrices,, Vol. 2, (). 
[4] 
J. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations,, SpringerVerlag, (1993). doi: 10.1007/9781461243427. 
[5] 
B. D. Hassard, N. D. Kazarinoff and Y.H. Wan, Theory and Applications of Hopf Bifurcation,, Cambridge University Press, (1981). 
[6] 
X. Jiang, P. Yu, Z. Yuan and X. Zou, Dynamics of an HIV1 therapy model of fighting a virus with another virus,, Journal of Biological Dynamics, 3 (2009), 387. doi: 10.1080/17513750802485007. 
[7] 
T. Kajiwara, T. Saraki and Y. Takeuchi, Construction of lyapunov functionals for delay differential equations in virology and epidemiology,, Nonlinear Analysis: Real World Applications, 13 (2012), 1802. doi: 10.1016/j.nonrwa.2011.12.011. 
[8] 
J. LaSalle, The Stability of Dynamical Systems,, SIAM, (1976). 
[9] 
C. Michie, A. McLean, C. Alcock and P. Beverly, Lifespan of human lymphocyte subsets defined by cd45 isoforms,, Nature, 360 (1992), 264. doi: 10.1038/360264a0. 
[10] 
J. Mittler, B. Sulzer, A. Neumann and A. Perelson, Influence of delayed virus production on viral dynamics in HIV1 infected patients,, Math. Biosci., 152 (1998), 143. 
[11] 
P. W. Nelson, J. D. Murray and A. S. Perelson, A model of HIV1 pathogenesis that includes an intracellular delay,, Mathematical Biosciences, 163 (2000), 201. doi: 10.1016/S00255564(99)000553. 
[12] 
G. Nolan, Harnessing viral devices as pharmaceuticals: Fighting HIV1s fire with fire,, Cell, 90 (1997), 821. 
[13] 
T. Revilla and G. GarcíaRamos, Fighting a virus with a virus: A dynamic model for HIV1 therapy,, Math. Biosci., 185 (2003), 191. doi: 10.1016/S00255564(03)000919. 
[14] 
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995). 
[15] 
E. Wagner and M. Hewlett, Basic Virology,, Blackwell, (1999). 
[16] 
P. Yu, Y. Ding and W. Jiang, Equivalence of MTS method and CMR method for delay differential equations associated with semisimple singularity,, Int. J. Bifurcation and Chaos, 24 (2014). doi: 10.1142/S0218127414500035. 
[17] 
P. Yu and X. Zou, Bifurcation analysis on an HIV1 Model with constant injection of recombinant,, Int. J. Bifurcation and Chaos, 22 (2012). doi: 10.1142/S0218127412500629. 
[18] 
H. Zhu and X. Zou, Impact of delays in cell infection and virus production on HIV1 dynamics,, Math. Medic. Bio., 25 (2008), 99. doi: 10.1093/imammb/dqm010. 
[19] 
H. Zhu and X. Zou, Dynamics of a HIV1 infection model with cellmediated immune response and intracellular delay,, Disc. Cont. Dyan. Syst. B., 12 (2009), 511. doi: 10.3934/dcdsb.2009.12.511. 
[1] 
Jinliang Wang, Lijuan Guan. Global stability for a HIV1 infection model with cellmediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems  B, 2012, 17 (1) : 297302. doi: 10.3934/dcdsb.2012.17.297 
[2] 
Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu. A delayed HIV1 model with virus waning term. Mathematical Biosciences & Engineering, 2016, 13 (1) : 135157. doi: 10.3934/mbe.2016.13.135 
[3] 
Jinhu Xu, Yicang Zhou. Bifurcation analysis of HIV1 infection model with celltocell transmission and immune response delay. Mathematical Biosciences & Engineering, 2016, 13 (2) : 343367. doi: 10.3934/mbe.2015006 
[4] 
Shengqiang Liu, Lin Wang. Global stability of an HIV1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences & Engineering, 2010, 7 (3) : 675685. doi: 10.3934/mbe.2010.7.675 
[5] 
Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems  B, 2017, 22 (6) : 23652387. doi: 10.3934/dcdsb.2017121 
[6] 
Huiyan Zhu, Xingfu Zou. Dynamics of a HIV1 Infection model with cellmediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems  B, 2009, 12 (2) : 511524. doi: 10.3934/dcdsb.2009.12.511 
[7] 
Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325346. doi: 10.3934/mbe.2006.3.325 
[8] 
Rachid Ouifki, Gareth Witten. A model of HIV1 infection with HAART therapy and intracellular delays. Discrete & Continuous Dynamical Systems  B, 2007, 8 (1) : 229240. doi: 10.3934/dcdsb.2007.8.229 
[9] 
Hossein Mohebbi, Azim Aminataei, Cameron J. Browne, Mohammad Reza Razvan. Hopf bifurcation of an agestructured virus infection model. Discrete & Continuous Dynamical Systems  B, 2018, 23 (2) : 861885. doi: 10.3934/dcdsb.2018046 
[10] 
Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an agestructured virus dynamics model with BeddingtonDeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859877. doi: 10.3934/mbe.2015.12.859 
[11] 
Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virusdriven proliferation of target cells. Discrete & Continuous Dynamical Systems  B, 2014, 19 (6) : 17491768. doi: 10.3934/dcdsb.2014.19.1749 
[12] 
Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa. A twostrain HIV1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences & Engineering, 2005, 2 (4) : 811832. doi: 10.3934/mbe.2005.2.811 
[13] 
Xia Wang, Shengqiang Liu, Libin Rong. Permanence and extinction of a nonautonomous HIV1 model with time delays. Discrete & Continuous Dynamical Systems  B, 2014, 19 (6) : 17831800. doi: 10.3934/dcdsb.2014.19.1783 
[14] 
BaoZhu Guo, LiMing Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689694. doi: 10.3934/mbe.2011.8.689 
[15] 
Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopfpitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems  S, 2017, 10 (3) : 523542. doi: 10.3934/dcdss.2017026 
[16] 
Cuicui Jiang, Kaifa Wang, Lijuan Song. Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 12331246. doi: 10.3934/mbe.2017063 
[17] 
Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems  S, 2017, 10 (5) : 973993. doi: 10.3934/dcdss.2017051 
[18] 
Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483498. doi: 10.3934/mbe.2013.10.483 
[19] 
Songbai Guo, Wanbiao Ma. Global behavior of delay differential equations model of HIV infection with apoptosis. Discrete & Continuous Dynamical Systems  B, 2016, 21 (1) : 103119. doi: 10.3934/dcdsb.2016.21.103 
[20] 
Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a sixdimensional FitzHughNagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems  B, 2011, 16 (2) : 457474. doi: 10.3934/dcdsb.2011.16.457 
2017 Impact Factor: 1.23
Tools
Metrics
Other articles
by authors
[Back to Top]