2014, 11(5): 1181-1198. doi: 10.3934/mbe.2014.11.1181

Impact of delay on HIV-1 dynamics of fighting a virus with another virus

1. 

Department of Applied Mathematics, Western University, London, Ontario N6A 5B7, Canada, Canada, Canada

Received  January 2014 Revised  April 2014 Published  June 2014

In this paper, we propose a mathematical model for HIV-1 infection with intracellular delay. The model examines a viral-therapy for controlling infections through recombining HIV-1 virus with a genetically modified virus. For this model, the basic reproduction number $\mathcal{R}_0$ are identified and its threshold properties are discussed. When $\mathcal{R}_0 < 1$, the infection-free equilibrium $E_0$ is globally asymptotically stable. When $\mathcal{R}_0 > 1$, $E_0$ becomes unstable and there occurs the single-infection equilibrium $E_s$, and $E_0$ and $E_s$ exchange their stability at the transcritical point $\mathcal{R}_0 =1$. If $1< \mathcal{R}_0 < R_1$, where $R_1$ is a positive constant explicitly depending on the model parameters, $E_s$ is globally asymptotically stable, while when $\mathcal{R}_0 > R_1$, $E_s$ loses its stability to the double-infection equilibrium $E_d$. There exist a constant $R_2$ such that $E_d$ is asymptotically stable if $R_1<\mathcal R_0 < R_2$, and $E_s$ and $E_d$ exchange their stability at the transcritical point $\mathcal{R}_0 =R_1$. We use one numerical example to determine the largest range of $\mathcal R_0$ for the local stability of $E_d$ and existence of Hopf bifurcation. Some simulations are performed to support the theoretical results. These results show that the delay plays an important role in determining the dynamic behaviour of the system. In the normal range of values, the delay may change the dynamic behaviour quantitatively, such as greatly reducing the amplitudes of oscillations, or even qualitatively changes the dynamical behaviour such as revoking oscillating solutions to equilibrium solutions. This suggests that the delay is a very important fact which should not be missed in HIV-1 modelling.
Citation: Yun Tian, Yu Bai, Pei Yu. Impact of delay on HIV-1 dynamics of fighting a virus with another virus. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1181-1198. doi: 10.3934/mbe.2014.11.1181
References:
[1]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters,, SIAM J. Math. Anal., 33 (2002), 1144.  doi: 10.1137/S0036141000376086.  Google Scholar

[2]

S. Busenberg and K. Cooke, Vertically Transmitted Diseases: Models and Dynamics,, Springer, (1993).  doi: 10.1007/978-3-642-75301-5.  Google Scholar

[3]

F. Gantmacher, The Theory of Matrices,, Vol. 2, ().   Google Scholar

[4]

J. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993).  doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[5]

B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, Theory and Applications of Hopf Bifurcation,, Cambridge University Press, (1981).   Google Scholar

[6]

X. Jiang, P. Yu, Z. Yuan and X. Zou, Dynamics of an HIV-1 therapy model of fighting a virus with another virus,, Journal of Biological Dynamics, 3 (2009), 387.  doi: 10.1080/17513750802485007.  Google Scholar

[7]

T. Kajiwara, T. Saraki and Y. Takeuchi, Construction of lyapunov functionals for delay differential equations in virology and epidemiology,, Nonlinear Analysis: Real World Applications, 13 (2012), 1802.  doi: 10.1016/j.nonrwa.2011.12.011.  Google Scholar

[8]

J. LaSalle, The Stability of Dynamical Systems,, SIAM, (1976).   Google Scholar

[9]

C. Michie, A. McLean, C. Alcock and P. Beverly, Lifespan of human lymphocyte subsets defined by cd45 isoforms,, Nature, 360 (1992), 264.  doi: 10.1038/360264a0.  Google Scholar

[10]

J. Mittler, B. Sulzer, A. Neumann and A. Perelson, Influence of delayed virus production on viral dynamics in HIV-1 infected patients,, Math. Biosci., 152 (1998), 143.   Google Scholar

[11]

P. W. Nelson, J. D. Murray and A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay,, Mathematical Biosciences, 163 (2000), 201.  doi: 10.1016/S0025-5564(99)00055-3.  Google Scholar

[12]

G. Nolan, Harnessing viral devices as pharmaceuticals: Fighting HIV-1s fire with fire,, Cell, 90 (1997), 821.   Google Scholar

[13]

T. Revilla and G. García-Ramos, Fighting a virus with a virus: A dynamic model for HIV-1 therapy,, Math. Biosci., 185 (2003), 191.  doi: 10.1016/S0025-5564(03)00091-9.  Google Scholar

[14]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995).   Google Scholar

[15]

E. Wagner and M. Hewlett, Basic Virology,, Blackwell, (1999).   Google Scholar

[16]

P. Yu, Y. Ding and W. Jiang, Equivalence of MTS method and CMR method for delay differential equations associated with semisimple singularity,, Int. J. Bifurcation and Chaos, 24 (2014).  doi: 10.1142/S0218127414500035.  Google Scholar

[17]

P. Yu and X. Zou, Bifurcation analysis on an HIV-1 Model with constant injection of recombinant,, Int. J. Bifurcation and Chaos, 22 (2012).  doi: 10.1142/S0218127412500629.  Google Scholar

[18]

H. Zhu and X. Zou, Impact of delays in cell infection and virus production on HIV-1 dynamics,, Math. Medic. Bio., 25 (2008), 99.  doi: 10.1093/imammb/dqm010.  Google Scholar

[19]

H. Zhu and X. Zou, Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay,, Disc. Cont. Dyan. Syst. B., 12 (2009), 511.  doi: 10.3934/dcdsb.2009.12.511.  Google Scholar

show all references

References:
[1]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters,, SIAM J. Math. Anal., 33 (2002), 1144.  doi: 10.1137/S0036141000376086.  Google Scholar

[2]

S. Busenberg and K. Cooke, Vertically Transmitted Diseases: Models and Dynamics,, Springer, (1993).  doi: 10.1007/978-3-642-75301-5.  Google Scholar

[3]

F. Gantmacher, The Theory of Matrices,, Vol. 2, ().   Google Scholar

[4]

J. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993).  doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[5]

B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, Theory and Applications of Hopf Bifurcation,, Cambridge University Press, (1981).   Google Scholar

[6]

X. Jiang, P. Yu, Z. Yuan and X. Zou, Dynamics of an HIV-1 therapy model of fighting a virus with another virus,, Journal of Biological Dynamics, 3 (2009), 387.  doi: 10.1080/17513750802485007.  Google Scholar

[7]

T. Kajiwara, T. Saraki and Y. Takeuchi, Construction of lyapunov functionals for delay differential equations in virology and epidemiology,, Nonlinear Analysis: Real World Applications, 13 (2012), 1802.  doi: 10.1016/j.nonrwa.2011.12.011.  Google Scholar

[8]

J. LaSalle, The Stability of Dynamical Systems,, SIAM, (1976).   Google Scholar

[9]

C. Michie, A. McLean, C. Alcock and P. Beverly, Lifespan of human lymphocyte subsets defined by cd45 isoforms,, Nature, 360 (1992), 264.  doi: 10.1038/360264a0.  Google Scholar

[10]

J. Mittler, B. Sulzer, A. Neumann and A. Perelson, Influence of delayed virus production on viral dynamics in HIV-1 infected patients,, Math. Biosci., 152 (1998), 143.   Google Scholar

[11]

P. W. Nelson, J. D. Murray and A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay,, Mathematical Biosciences, 163 (2000), 201.  doi: 10.1016/S0025-5564(99)00055-3.  Google Scholar

[12]

G. Nolan, Harnessing viral devices as pharmaceuticals: Fighting HIV-1s fire with fire,, Cell, 90 (1997), 821.   Google Scholar

[13]

T. Revilla and G. García-Ramos, Fighting a virus with a virus: A dynamic model for HIV-1 therapy,, Math. Biosci., 185 (2003), 191.  doi: 10.1016/S0025-5564(03)00091-9.  Google Scholar

[14]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995).   Google Scholar

[15]

E. Wagner and M. Hewlett, Basic Virology,, Blackwell, (1999).   Google Scholar

[16]

P. Yu, Y. Ding and W. Jiang, Equivalence of MTS method and CMR method for delay differential equations associated with semisimple singularity,, Int. J. Bifurcation and Chaos, 24 (2014).  doi: 10.1142/S0218127414500035.  Google Scholar

[17]

P. Yu and X. Zou, Bifurcation analysis on an HIV-1 Model with constant injection of recombinant,, Int. J. Bifurcation and Chaos, 22 (2012).  doi: 10.1142/S0218127412500629.  Google Scholar

[18]

H. Zhu and X. Zou, Impact of delays in cell infection and virus production on HIV-1 dynamics,, Math. Medic. Bio., 25 (2008), 99.  doi: 10.1093/imammb/dqm010.  Google Scholar

[19]

H. Zhu and X. Zou, Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay,, Disc. Cont. Dyan. Syst. B., 12 (2009), 511.  doi: 10.3934/dcdsb.2009.12.511.  Google Scholar

[1]

Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297

[2]

Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu. A delayed HIV-1 model with virus waning term. Mathematical Biosciences & Engineering, 2016, 13 (1) : 135-157. doi: 10.3934/mbe.2016.13.135

[3]

Jinhu Xu, Yicang Zhou. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences & Engineering, 2016, 13 (2) : 343-367. doi: 10.3934/mbe.2015006

[4]

Shengqiang Liu, Lin Wang. Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences & Engineering, 2010, 7 (3) : 675-685. doi: 10.3934/mbe.2010.7.675

[5]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[6]

Huiyan Zhu, Xingfu Zou. Dynamics of a HIV-1 Infection model with cell-mediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 511-524. doi: 10.3934/dcdsb.2009.12.511

[7]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[8]

Rachid Ouifki, Gareth Witten. A model of HIV-1 infection with HAART therapy and intracellular delays. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 229-240. doi: 10.3934/dcdsb.2007.8.229

[9]

Hossein Mohebbi, Azim Aminataei, Cameron J. Browne, Mohammad Reza Razvan. Hopf bifurcation of an age-structured virus infection model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 861-885. doi: 10.3934/dcdsb.2018046

[10]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[11]

Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749

[12]

Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa. A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences & Engineering, 2005, 2 (4) : 811-832. doi: 10.3934/mbe.2005.2.811

[13]

Xia Wang, Shengqiang Liu, Libin Rong. Permanence and extinction of a non-autonomous HIV-1 model with time delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1783-1800. doi: 10.3934/dcdsb.2014.19.1783

[14]

Nikolay Pertsev, Konstantin Loginov, Gennady Bocharov. Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020141

[15]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[16]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[17]

Cuicui Jiang, Kaifa Wang, Lijuan Song. Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1233-1246. doi: 10.3934/mbe.2017063

[18]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[19]

Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483

[20]

Songbai Guo, Wanbiao Ma. Global behavior of delay differential equations model of HIV infection with apoptosis. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 103-119. doi: 10.3934/dcdsb.2016.21.103

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]