2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247

Spatiotemporal complexity in a predator--prey model with weak Allee effects

1. 

Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China

2. 

Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

3. 

Science and Mathematics Faculty, School of Letters and Sciences, Arizona State University, Mesa, AZ 85212

4. 

College of Mathematics and Information Science, Wenzhou University, Wenzhou, 325035, China

Received  March 2014 Revised  July 2014 Published  September 2014

In this article, we study the rich dynamics of a diffusive predator-prey system with Allee effects in the prey growth. Our model assumes a prey-dependent Holling type-II functional response and a density dependent death rate for predator. We investigate the dissipation and persistence property, the stability of nonnegative and positive constant steady state of the model, as well as the existence of Hopf bifurcation at the positive constant solution. In addition, we provide results on the existence and non-existence of positive non-constant solutions of the model. We also demonstrate the Turing instability under some conditions, and find that our model exhibits a diffusion-controlled formation growth of spots, stripes, and holes pattern replication via numerical simulations. One of the most interesting findings is that Turing instability in the model is induced by the density dependent death rate in predator.
Citation: Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang. Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1247-1274. doi: 10.3934/mbe.2014.11.1247
References:
[1]

P. A. Abrams, The fallacies of "ratio-dependent" predation,, Ecology, 75 (1994), 1842.  doi: 10.2307/1939644.  Google Scholar

[2]

P. A. Abrams and L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?,, Trends in Ecology & Evolution, 15 (2000), 337.  doi: 10.1016/S0169-5347(00)01908-X.  Google Scholar

[3]

P. Aguirre, E. González-Olivares and E. Sáez, Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect,, Nonlinear Analysis: Real World Applications, 10 (2009), 1401.  doi: 10.1016/j.nonrwa.2008.01.022.  Google Scholar

[4]

P. Aguirre, E. González-Olivares and E. Sáez, Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect,, SIAM Journal on Applied Mathematics, 69 (2009), 1244.  doi: 10.1137/070705210.  Google Scholar

[5]

H. R. Akçakaya, R. Arditi and L. R. Ginzburg, Ratio-dependent predation: An abstraction that works,, Ecology, 76 (1995), 995.   Google Scholar

[6]

N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations,, Journal of Differential Equations, 33 (1979), 201.  doi: 10.1016/0022-0396(79)90088-3.  Google Scholar

[7]

W. C. Allee, Animal Aggregations, a Study in General Sociology,, University of Chicago Press, (1931).   Google Scholar

[8]

D. Alonso, F. Bartumeus and J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns,, Ecology, 83 (2002), 28.  doi: 10.2307/2680118.  Google Scholar

[9]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence,, Journal of Theoretical Biology, 139 (1989), 311.  doi: 10.1016/S0022-5193(89)80211-5.  Google Scholar

[10]

A. Ardito and P. Ricciardi, Lyapunov functions for a generalized Gause-type model,, Journal of Mathematical Biology, 33 (1995), 816.  doi: 10.1007/BF00187283.  Google Scholar

[11]

M. Banerjee and S. Banerjee, Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model,, Mathematical Biosciences, 236 (2012), 64.  doi: 10.1016/j.mbs.2011.12.005.  Google Scholar

[12]

M. Banerjee and S. Petrovskii, Self-organized spatial patterns and chaos in a ratio-dependent predator-prey system,, Theoretical Ecology, 4 (2011), 37.   Google Scholar

[13]

M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations,, Journal of Theoretical Biology, 245 (2007), 220.  doi: 10.1016/j.jtbi.2006.09.036.  Google Scholar

[14]

D. L. Benson, J. A. Sherratt and P. K. Maini, Diffusion driven instability in an inhomogeneous domain,, Bulletin of Mathematical Biology, 55 (1993), 365.  doi: 10.1016/S0092-8240(05)80270-8.  Google Scholar

[15]

A. A. Berryman, The orgins and evolution of predator-prey theory,, Ecology, 73 (1992), 1530.  doi: 10.2307/1940005.  Google Scholar

[16]

C. Bianca, Existence of stationary solutions in kinetic models with Gaussian thermostats,, Mathematical Methods in the Applied Sciences, 36 (2013), 1768.  doi: 10.1002/mma.2722.  Google Scholar

[17]

D. S Boukal and L. Berec, Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate encounters,, Journal of Theoretical Biology, 218 (2002), 375.  doi: 10.1006/jtbi.2002.3084.  Google Scholar

[18]

D. S. Boukal, M. W. Sabelis and L. Berec, How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses,, Theoretical Population Biology, 72 (2007), 136.  doi: 10.1016/j.tpb.2006.12.003.  Google Scholar

[19]

N. F. Britton, Essential Mathematical Biology,, Springer, (2003).  doi: 10.1007/978-1-4471-0049-2.  Google Scholar

[20]

K. J. Brown, P. C. Dunne and R. A. Gardner, A semilinear parabolic system arising in the theory of superconductivity,, Journal of Differential Equations, 40 (1981), 232.  doi: 10.1016/0022-0396(81)90020-6.  Google Scholar

[21]

Y. Cai, W. Wang and J. Wang, Dynamics of a diffusive predator-prey model with additive Allee effect,, International Journal of Biomathematics, 5 (2012).  doi: 10.1142/S1793524511001659.  Google Scholar

[22]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, Wiley, (2003).  doi: 10.1002/0470871296.  Google Scholar

[23]

E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations,, SIAM Journal of Appllied Mathematics, 35 (1978), 1.  doi: 10.1137/0135001.  Google Scholar

[24]

L. B. Crowder and W. E. Cooper, Habitat structural complexity and the interaction between bluegills and their prey,, Ecology, 63 (1982), 1802.  doi: 10.2307/1940122.  Google Scholar

[25]

B. Dennis, Allee effects: Population growth, critical density, and the chance of extinction,, Natural Resource Modeling, 3 (1989), 481.   Google Scholar

[26]

X. Ding and J. Jiang, Positive periodic solutions in delayed Gause-type predator-prey systems,, Journal of Mathematical Analysis and Applications, 339 (2008), 1220.  doi: 10.1016/j.jmaa.2007.07.079.  Google Scholar

[27]

K. Fujii, Complexity-stability relationship of two-prey-one-predator species system model: Local and global stability,, Journal of Theoretical Biology, 69 (1977), 613.  doi: 10.1016/0022-5193(77)90370-8.  Google Scholar

[28]

M. R. Garvie, Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in Matlab,, Bulletin of Mathematical Biology, 69 (2007), 931.  doi: 10.1007/s11538-006-9062-3.  Google Scholar

[29]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[30]

E. González-Olivares, H. Meneses-Alcay, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma and R. Ramos-Jiliberto, Multiple stability and uniqueness of the limit cycle in a Gause-type predator-prey model considering the allee effect on prey,, Nonlinear Analysis: Real World Applications, 12 (2011), 2931.  doi: 10.1016/j.nonrwa.2011.04.003.  Google Scholar

[31]

K. Hasík, On a predator-prey system of Gause type,, Journal of Mathematical Biology, 60 (2010), 59.  doi: 10.1007/s00285-009-0257-8.  Google Scholar

[32]

D. Henry and D. B. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).   Google Scholar

[33]

S.-B. Hsu, T.-W. Hwang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system,, Journal of Mathematical Biology, 42 (2001), 489.  doi: 10.1007/s002850100079.  Google Scholar

[34]

T.-W. Hwang, Uniqueness of the limit cycle for Gause-type predator-prey systems,, Journal of Mathematical Analysis and Applications, 238 (1999), 179.  doi: 10.1006/jmaa.1999.6520.  Google Scholar

[35]

Y. Kang and L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator,, Journal of Mathematical Biology, 67 (2013), 1227.  doi: 10.1007/s00285-012-0584-z.  Google Scholar

[36]

W. Ko and K. Ryu, A qualitative study on general Gause-type predator-prey models with constant diffusion rates,, Journal of Mathematical Analysis and Applications, 344 (2008), 217.  doi: 10.1016/j.jmaa.2008.03.006.  Google Scholar

[37]

Y. Kuang, Global stability of Gause-type predator-prey systems,, Journal of Mathematical Biology, 28 (1990), 463.  doi: 10.1007/BF00178329.  Google Scholar

[38]

Y. Kuang, Rich dynamics of Gause-type ratio-dependent predator-prey system,, Fields Institute Communication, 21 (1999), 325.   Google Scholar

[39]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system,, Journal of Mathematical Biology, 36 (1998), 389.  doi: 10.1007/s002850050105.  Google Scholar

[40]

Y. Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems,, Mathematical Biosciences, 88 (1988), 67.  doi: 10.1016/0025-5564(88)90049-1.  Google Scholar

[41]

S. A. Levin, The problem of pattern and scale in ecology,, Ecology, 73 (1992), 1943.  doi: 10.1007/978-1-4615-1769-6_15.  Google Scholar

[42]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms,, Theoretical Population Biology, 43 (1993), 141.  doi: 10.1006/tpbi.1993.1007.  Google Scholar

[43]

C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, Journal of Differential Equations, 72 (1988), 1.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[44]

Y. Liu, Geometric criteria for the nonexistence of cycles in Gause-type predator-prey systems,, Proceedings of the American Mathematical Society, 133 (2005), 3619.  doi: 10.1090/S0002-9939-05-08026-3.  Google Scholar

[45]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, Journal of Differential Equations, 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[46]

A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics,, SIAM Review, 44 (2002), 311.  doi: 10.1137/S0036144502404442.  Google Scholar

[47]

Z. Mei, Numerical Bifurcation Analysis for Reaction-Diffusion Equations,, Springer, (2000).  doi: 10.1007/978-3-662-04177-2.  Google Scholar

[48]

S. M. Moghadas and M. E. Alexander, Dynamics of a generalized Gause-type predator-prey model with a seasonal functional response,, Chaos, 23 (2005), 55.  doi: 10.1016/j.chaos.2004.04.030.  Google Scholar

[49]

S. M. Moghadas, M. E. Alexander and B. D. Corbett, A non-standard numerical scheme for a generalized Gause-type predator-prey model,, Physica D: Nonlinear Phenomena, 188 (2004), 134.  doi: 10.1016/S0167-2789(03)00285-9.  Google Scholar

[50]

S. M. Moghadas and B. D. Corbett, Limit cycles in a generalized Gause-type predator-prey model,, Chaos, 37 (2008), 1343.  doi: 10.1016/j.chaos.2006.10.017.  Google Scholar

[51]

A. Morozov and S. Petrovskii, Excitable population dynamics, biological control failure, and spatiotemporal pattern formation in a model ecosystem,, Bulletin of Mathematical Biology, 71 (2009), 863.  doi: 10.1007/s11538-008-9385-3.  Google Scholar

[52]

A. Morozov, S. Petrovskii and B.-L. Li, Bifurcations and chaos in a predator-prey system with the Allee effect,, Proceedings of the Royal Society of London-B: Biological Sciences, 271 (2004), 1407.  doi: 10.1098/rspb.2004.2733.  Google Scholar

[53]

J. D. Murray, Discussion: Turing's theory of morphogenesis-its influence on modelling biological pattern and form,, Bulletin of Mathematical Biology, 52 (1990), 119.  doi: 10.1007/BF02459571.  Google Scholar

[54]

J. D. Murray, Mathematical Biology,, Springer, (2002).  doi: 10.1007/b98869.  Google Scholar

[55]

C. Neuhauser, Mathematical challenges in spatial ecology,, Notices of the AMS, 48 (2001), 1304.   Google Scholar

[56]

P. Y. H. Pang and M. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion,, Proceedings of the Royal Society of Edinburgh-A-Mathematics, 133 (2003), 919.  doi: 10.1017/S0308210500002742.  Google Scholar

[57]

P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model,, Journal of Differential Equations, 200 (2004), 245.  doi: 10.1016/j.jde.2004.01.004.  Google Scholar

[58]

R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case,, Journal of Differential Equations, 247 (2009), 866.  doi: 10.1016/j.jde.2009.03.008.  Google Scholar

[59]

R. Peng, J. Shi and M. Wang, Stationary pattern of a ratio-dependent food chain model with diffusion,, SIAM Journal on Applied Mathematics, 67 (2007), 1479.  doi: 10.1137/05064624X.  Google Scholar

[60]

R. Peng, J. Shi and M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law,, Nonlinearity, 21 (2008).  doi: 10.1088/0951-7715/21/7/006.  Google Scholar

[61]

A. M. de Roos, E. McCauley and W. G. Wilson, Pattern formation and the spatial scale of interaction between predators and their prey,, Theoretical Population Biology, 53 (1998), 108.   Google Scholar

[62]

J. F. Savino and R. A. Stein, Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation,, Transactions of the American Fisheries Society, 111 (1982), 255.  doi: 10.1577/1548-8659(1982)111<255:PIBLBA>2.0.CO;2.  Google Scholar

[63]

A. Sikder and A. B. Roy, Persistence of a generalized Gause-type two prey-two predator pair linked by competition,, Mathematical Biosciences, 122 (1994), 1.  doi: 10.1016/0025-5564(94)90080-9.  Google Scholar

[64]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[65]

R. A. Stein, Selective predation, optimal foraging, and the predator-prey interaction between fish and crayfish,, Ecology, 58 (1977), 1237.  doi: 10.2307/1935078.  Google Scholar

[66]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation,, Trends in Ecology & Evolution, 14 (1999), 401.  doi: 10.1016/S0169-5347(99)01684-5.  Google Scholar

[67]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?,, Oikos, (1999), 185.  doi: 10.2307/3547011.  Google Scholar

[68]

J. P. Stover, B. E. Kendall and G. A. Fox, Demographic heterogeneity impacts density-dependent population dynamics,, Theoretical Ecology, 5 (2012), 297.  doi: 10.1007/s12080-011-0129-x.  Google Scholar

[69]

P. Turchin, Complex Population Dynamics: A Theoretical/Empirical Synthesis,, Princeton University Press, (2003).   Google Scholar

[70]

A. M. Turing, The chemical basis of morphogenesis,, Philosophical Transactions of the Royal Society of London-B, 237 (1952), 37.  doi: 10.1016/S0092-8240(05)80008-4.  Google Scholar

[71]

R. K. Upadhyay, V. Volpert and N. K. Thakur, Propagation of turing patterns in a plankton model,, Journal of Biological Dynamics, 6 (2012), 524.  doi: 10.1080/17513758.2012.655327.  Google Scholar

[72]

J. Wang, J. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey,, Journal of Differential Equations, 251 (2011), 1276.  doi: 10.1016/j.jde.2011.03.004.  Google Scholar

[73]

M. Wang, Nonlinear Partial Differential Equations of Parabolic Type,, Science Press, (1993).   Google Scholar

[74]

M. Wang, Stationary patterns of strongly coupled prey-predator models,, Journal of Mathematical Analysis and Applications, 292 (2004), 484.  doi: 10.1016/j.jmaa.2003.12.027.  Google Scholar

[75]

M. Wang, Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion,, Physica D, 196 (2004), 172.  doi: 10.1016/j.physd.2004.05.007.  Google Scholar

[76]

M. Wang, Stationary patterns caused by cross-diffusion for a three-species prey-predator model,, Computers and Mathematics with Applications, 52 (2006), 707.  doi: 10.1016/j.camwa.2006.10.009.  Google Scholar

[77]

W. Wang, Q. Liu and Z. Jin, Spatiotemporal complexity of a ratio-dependent predator-prey system,, Physical Review E, 75 (2007).  doi: 10.1103/PhysRevE.75.051913.  Google Scholar

[78]

W. Wang, L. Zhang, H. Wang and Z. Li, Pattern formation of a predator-prey system with Ivlev-type functional response,, Ecological Modelling, 221 (2010), 131.  doi: 10.1016/j.ecolmodel.2009.09.011.  Google Scholar

[79]

Z. Wu, J. Yin and C. Wang, Elliptic and Parabolic Equations,, World Scientific, (2006).  doi: 10.1142/6238.  Google Scholar

[80]

D. Xiao and S. Ruan, Global analysis in a predator-prey system with nonmonotonic functional response,, SIAM Journal on Applied Mathematics, 61 (2001), 1445.  doi: 10.1137/S0036139999361896.  Google Scholar

[81]

R. Xu, M. A. J. Chaplain and F. A. Davidson, Global stability of a Lotka-Volterra type predator-prey model with stage structure and time delay,, Applied Mathematics and Computation, 159 (2004), 863.  doi: 10.1016/j.amc.2003.11.008.  Google Scholar

[82]

S. Zhou, Y. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects,, Theoretical Population Biology, 67 (2005), 23.  doi: 10.1016/j.tpb.2004.06.007.  Google Scholar

show all references

References:
[1]

P. A. Abrams, The fallacies of "ratio-dependent" predation,, Ecology, 75 (1994), 1842.  doi: 10.2307/1939644.  Google Scholar

[2]

P. A. Abrams and L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?,, Trends in Ecology & Evolution, 15 (2000), 337.  doi: 10.1016/S0169-5347(00)01908-X.  Google Scholar

[3]

P. Aguirre, E. González-Olivares and E. Sáez, Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect,, Nonlinear Analysis: Real World Applications, 10 (2009), 1401.  doi: 10.1016/j.nonrwa.2008.01.022.  Google Scholar

[4]

P. Aguirre, E. González-Olivares and E. Sáez, Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect,, SIAM Journal on Applied Mathematics, 69 (2009), 1244.  doi: 10.1137/070705210.  Google Scholar

[5]

H. R. Akçakaya, R. Arditi and L. R. Ginzburg, Ratio-dependent predation: An abstraction that works,, Ecology, 76 (1995), 995.   Google Scholar

[6]

N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations,, Journal of Differential Equations, 33 (1979), 201.  doi: 10.1016/0022-0396(79)90088-3.  Google Scholar

[7]

W. C. Allee, Animal Aggregations, a Study in General Sociology,, University of Chicago Press, (1931).   Google Scholar

[8]

D. Alonso, F. Bartumeus and J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns,, Ecology, 83 (2002), 28.  doi: 10.2307/2680118.  Google Scholar

[9]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence,, Journal of Theoretical Biology, 139 (1989), 311.  doi: 10.1016/S0022-5193(89)80211-5.  Google Scholar

[10]

A. Ardito and P. Ricciardi, Lyapunov functions for a generalized Gause-type model,, Journal of Mathematical Biology, 33 (1995), 816.  doi: 10.1007/BF00187283.  Google Scholar

[11]

M. Banerjee and S. Banerjee, Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model,, Mathematical Biosciences, 236 (2012), 64.  doi: 10.1016/j.mbs.2011.12.005.  Google Scholar

[12]

M. Banerjee and S. Petrovskii, Self-organized spatial patterns and chaos in a ratio-dependent predator-prey system,, Theoretical Ecology, 4 (2011), 37.   Google Scholar

[13]

M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations,, Journal of Theoretical Biology, 245 (2007), 220.  doi: 10.1016/j.jtbi.2006.09.036.  Google Scholar

[14]

D. L. Benson, J. A. Sherratt and P. K. Maini, Diffusion driven instability in an inhomogeneous domain,, Bulletin of Mathematical Biology, 55 (1993), 365.  doi: 10.1016/S0092-8240(05)80270-8.  Google Scholar

[15]

A. A. Berryman, The orgins and evolution of predator-prey theory,, Ecology, 73 (1992), 1530.  doi: 10.2307/1940005.  Google Scholar

[16]

C. Bianca, Existence of stationary solutions in kinetic models with Gaussian thermostats,, Mathematical Methods in the Applied Sciences, 36 (2013), 1768.  doi: 10.1002/mma.2722.  Google Scholar

[17]

D. S Boukal and L. Berec, Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate encounters,, Journal of Theoretical Biology, 218 (2002), 375.  doi: 10.1006/jtbi.2002.3084.  Google Scholar

[18]

D. S. Boukal, M. W. Sabelis and L. Berec, How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses,, Theoretical Population Biology, 72 (2007), 136.  doi: 10.1016/j.tpb.2006.12.003.  Google Scholar

[19]

N. F. Britton, Essential Mathematical Biology,, Springer, (2003).  doi: 10.1007/978-1-4471-0049-2.  Google Scholar

[20]

K. J. Brown, P. C. Dunne and R. A. Gardner, A semilinear parabolic system arising in the theory of superconductivity,, Journal of Differential Equations, 40 (1981), 232.  doi: 10.1016/0022-0396(81)90020-6.  Google Scholar

[21]

Y. Cai, W. Wang and J. Wang, Dynamics of a diffusive predator-prey model with additive Allee effect,, International Journal of Biomathematics, 5 (2012).  doi: 10.1142/S1793524511001659.  Google Scholar

[22]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, Wiley, (2003).  doi: 10.1002/0470871296.  Google Scholar

[23]

E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations,, SIAM Journal of Appllied Mathematics, 35 (1978), 1.  doi: 10.1137/0135001.  Google Scholar

[24]

L. B. Crowder and W. E. Cooper, Habitat structural complexity and the interaction between bluegills and their prey,, Ecology, 63 (1982), 1802.  doi: 10.2307/1940122.  Google Scholar

[25]

B. Dennis, Allee effects: Population growth, critical density, and the chance of extinction,, Natural Resource Modeling, 3 (1989), 481.   Google Scholar

[26]

X. Ding and J. Jiang, Positive periodic solutions in delayed Gause-type predator-prey systems,, Journal of Mathematical Analysis and Applications, 339 (2008), 1220.  doi: 10.1016/j.jmaa.2007.07.079.  Google Scholar

[27]

K. Fujii, Complexity-stability relationship of two-prey-one-predator species system model: Local and global stability,, Journal of Theoretical Biology, 69 (1977), 613.  doi: 10.1016/0022-5193(77)90370-8.  Google Scholar

[28]

M. R. Garvie, Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in Matlab,, Bulletin of Mathematical Biology, 69 (2007), 931.  doi: 10.1007/s11538-006-9062-3.  Google Scholar

[29]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[30]

E. González-Olivares, H. Meneses-Alcay, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma and R. Ramos-Jiliberto, Multiple stability and uniqueness of the limit cycle in a Gause-type predator-prey model considering the allee effect on prey,, Nonlinear Analysis: Real World Applications, 12 (2011), 2931.  doi: 10.1016/j.nonrwa.2011.04.003.  Google Scholar

[31]

K. Hasík, On a predator-prey system of Gause type,, Journal of Mathematical Biology, 60 (2010), 59.  doi: 10.1007/s00285-009-0257-8.  Google Scholar

[32]

D. Henry and D. B. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).   Google Scholar

[33]

S.-B. Hsu, T.-W. Hwang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system,, Journal of Mathematical Biology, 42 (2001), 489.  doi: 10.1007/s002850100079.  Google Scholar

[34]

T.-W. Hwang, Uniqueness of the limit cycle for Gause-type predator-prey systems,, Journal of Mathematical Analysis and Applications, 238 (1999), 179.  doi: 10.1006/jmaa.1999.6520.  Google Scholar

[35]

Y. Kang and L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator,, Journal of Mathematical Biology, 67 (2013), 1227.  doi: 10.1007/s00285-012-0584-z.  Google Scholar

[36]

W. Ko and K. Ryu, A qualitative study on general Gause-type predator-prey models with constant diffusion rates,, Journal of Mathematical Analysis and Applications, 344 (2008), 217.  doi: 10.1016/j.jmaa.2008.03.006.  Google Scholar

[37]

Y. Kuang, Global stability of Gause-type predator-prey systems,, Journal of Mathematical Biology, 28 (1990), 463.  doi: 10.1007/BF00178329.  Google Scholar

[38]

Y. Kuang, Rich dynamics of Gause-type ratio-dependent predator-prey system,, Fields Institute Communication, 21 (1999), 325.   Google Scholar

[39]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system,, Journal of Mathematical Biology, 36 (1998), 389.  doi: 10.1007/s002850050105.  Google Scholar

[40]

Y. Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems,, Mathematical Biosciences, 88 (1988), 67.  doi: 10.1016/0025-5564(88)90049-1.  Google Scholar

[41]

S. A. Levin, The problem of pattern and scale in ecology,, Ecology, 73 (1992), 1943.  doi: 10.1007/978-1-4615-1769-6_15.  Google Scholar

[42]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms,, Theoretical Population Biology, 43 (1993), 141.  doi: 10.1006/tpbi.1993.1007.  Google Scholar

[43]

C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, Journal of Differential Equations, 72 (1988), 1.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[44]

Y. Liu, Geometric criteria for the nonexistence of cycles in Gause-type predator-prey systems,, Proceedings of the American Mathematical Society, 133 (2005), 3619.  doi: 10.1090/S0002-9939-05-08026-3.  Google Scholar

[45]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, Journal of Differential Equations, 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[46]

A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics,, SIAM Review, 44 (2002), 311.  doi: 10.1137/S0036144502404442.  Google Scholar

[47]

Z. Mei, Numerical Bifurcation Analysis for Reaction-Diffusion Equations,, Springer, (2000).  doi: 10.1007/978-3-662-04177-2.  Google Scholar

[48]

S. M. Moghadas and M. E. Alexander, Dynamics of a generalized Gause-type predator-prey model with a seasonal functional response,, Chaos, 23 (2005), 55.  doi: 10.1016/j.chaos.2004.04.030.  Google Scholar

[49]

S. M. Moghadas, M. E. Alexander and B. D. Corbett, A non-standard numerical scheme for a generalized Gause-type predator-prey model,, Physica D: Nonlinear Phenomena, 188 (2004), 134.  doi: 10.1016/S0167-2789(03)00285-9.  Google Scholar

[50]

S. M. Moghadas and B. D. Corbett, Limit cycles in a generalized Gause-type predator-prey model,, Chaos, 37 (2008), 1343.  doi: 10.1016/j.chaos.2006.10.017.  Google Scholar

[51]

A. Morozov and S. Petrovskii, Excitable population dynamics, biological control failure, and spatiotemporal pattern formation in a model ecosystem,, Bulletin of Mathematical Biology, 71 (2009), 863.  doi: 10.1007/s11538-008-9385-3.  Google Scholar

[52]

A. Morozov, S. Petrovskii and B.-L. Li, Bifurcations and chaos in a predator-prey system with the Allee effect,, Proceedings of the Royal Society of London-B: Biological Sciences, 271 (2004), 1407.  doi: 10.1098/rspb.2004.2733.  Google Scholar

[53]

J. D. Murray, Discussion: Turing's theory of morphogenesis-its influence on modelling biological pattern and form,, Bulletin of Mathematical Biology, 52 (1990), 119.  doi: 10.1007/BF02459571.  Google Scholar

[54]

J. D. Murray, Mathematical Biology,, Springer, (2002).  doi: 10.1007/b98869.  Google Scholar

[55]

C. Neuhauser, Mathematical challenges in spatial ecology,, Notices of the AMS, 48 (2001), 1304.   Google Scholar

[56]

P. Y. H. Pang and M. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion,, Proceedings of the Royal Society of Edinburgh-A-Mathematics, 133 (2003), 919.  doi: 10.1017/S0308210500002742.  Google Scholar

[57]

P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model,, Journal of Differential Equations, 200 (2004), 245.  doi: 10.1016/j.jde.2004.01.004.  Google Scholar

[58]

R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case,, Journal of Differential Equations, 247 (2009), 866.  doi: 10.1016/j.jde.2009.03.008.  Google Scholar

[59]

R. Peng, J. Shi and M. Wang, Stationary pattern of a ratio-dependent food chain model with diffusion,, SIAM Journal on Applied Mathematics, 67 (2007), 1479.  doi: 10.1137/05064624X.  Google Scholar

[60]

R. Peng, J. Shi and M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law,, Nonlinearity, 21 (2008).  doi: 10.1088/0951-7715/21/7/006.  Google Scholar

[61]

A. M. de Roos, E. McCauley and W. G. Wilson, Pattern formation and the spatial scale of interaction between predators and their prey,, Theoretical Population Biology, 53 (1998), 108.   Google Scholar

[62]

J. F. Savino and R. A. Stein, Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation,, Transactions of the American Fisheries Society, 111 (1982), 255.  doi: 10.1577/1548-8659(1982)111<255:PIBLBA>2.0.CO;2.  Google Scholar

[63]

A. Sikder and A. B. Roy, Persistence of a generalized Gause-type two prey-two predator pair linked by competition,, Mathematical Biosciences, 122 (1994), 1.  doi: 10.1016/0025-5564(94)90080-9.  Google Scholar

[64]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[65]

R. A. Stein, Selective predation, optimal foraging, and the predator-prey interaction between fish and crayfish,, Ecology, 58 (1977), 1237.  doi: 10.2307/1935078.  Google Scholar

[66]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation,, Trends in Ecology & Evolution, 14 (1999), 401.  doi: 10.1016/S0169-5347(99)01684-5.  Google Scholar

[67]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?,, Oikos, (1999), 185.  doi: 10.2307/3547011.  Google Scholar

[68]

J. P. Stover, B. E. Kendall and G. A. Fox, Demographic heterogeneity impacts density-dependent population dynamics,, Theoretical Ecology, 5 (2012), 297.  doi: 10.1007/s12080-011-0129-x.  Google Scholar

[69]

P. Turchin, Complex Population Dynamics: A Theoretical/Empirical Synthesis,, Princeton University Press, (2003).   Google Scholar

[70]

A. M. Turing, The chemical basis of morphogenesis,, Philosophical Transactions of the Royal Society of London-B, 237 (1952), 37.  doi: 10.1016/S0092-8240(05)80008-4.  Google Scholar

[71]

R. K. Upadhyay, V. Volpert and N. K. Thakur, Propagation of turing patterns in a plankton model,, Journal of Biological Dynamics, 6 (2012), 524.  doi: 10.1080/17513758.2012.655327.  Google Scholar

[72]

J. Wang, J. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey,, Journal of Differential Equations, 251 (2011), 1276.  doi: 10.1016/j.jde.2011.03.004.  Google Scholar

[73]

M. Wang, Nonlinear Partial Differential Equations of Parabolic Type,, Science Press, (1993).   Google Scholar

[74]

M. Wang, Stationary patterns of strongly coupled prey-predator models,, Journal of Mathematical Analysis and Applications, 292 (2004), 484.  doi: 10.1016/j.jmaa.2003.12.027.  Google Scholar

[75]

M. Wang, Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion,, Physica D, 196 (2004), 172.  doi: 10.1016/j.physd.2004.05.007.  Google Scholar

[76]

M. Wang, Stationary patterns caused by cross-diffusion for a three-species prey-predator model,, Computers and Mathematics with Applications, 52 (2006), 707.  doi: 10.1016/j.camwa.2006.10.009.  Google Scholar

[77]

W. Wang, Q. Liu and Z. Jin, Spatiotemporal complexity of a ratio-dependent predator-prey system,, Physical Review E, 75 (2007).  doi: 10.1103/PhysRevE.75.051913.  Google Scholar

[78]

W. Wang, L. Zhang, H. Wang and Z. Li, Pattern formation of a predator-prey system with Ivlev-type functional response,, Ecological Modelling, 221 (2010), 131.  doi: 10.1016/j.ecolmodel.2009.09.011.  Google Scholar

[79]

Z. Wu, J. Yin and C. Wang, Elliptic and Parabolic Equations,, World Scientific, (2006).  doi: 10.1142/6238.  Google Scholar

[80]

D. Xiao and S. Ruan, Global analysis in a predator-prey system with nonmonotonic functional response,, SIAM Journal on Applied Mathematics, 61 (2001), 1445.  doi: 10.1137/S0036139999361896.  Google Scholar

[81]

R. Xu, M. A. J. Chaplain and F. A. Davidson, Global stability of a Lotka-Volterra type predator-prey model with stage structure and time delay,, Applied Mathematics and Computation, 159 (2004), 863.  doi: 10.1016/j.amc.2003.11.008.  Google Scholar

[82]

S. Zhou, Y. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects,, Theoretical Population Biology, 67 (2005), 23.  doi: 10.1016/j.tpb.2004.06.007.  Google Scholar

[1]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[2]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[3]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[6]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[7]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[8]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[9]

Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356

[10]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[11]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[12]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[15]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[16]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[17]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[18]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[19]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[20]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]