# American Institute of Mathematical Sciences

2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247

## Spatiotemporal complexity in a predator--prey model with weak Allee effects

 1 Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China 2 Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India 3 Science and Mathematics Faculty, School of Letters and Sciences, Arizona State University, Mesa, AZ 85212 4 College of Mathematics and Information Science, Wenzhou University, Wenzhou, 325035, China

Received  March 2014 Revised  July 2014 Published  September 2014

In this article, we study the rich dynamics of a diffusive predator-prey system with Allee effects in the prey growth. Our model assumes a prey-dependent Holling type-II functional response and a density dependent death rate for predator. We investigate the dissipation and persistence property, the stability of nonnegative and positive constant steady state of the model, as well as the existence of Hopf bifurcation at the positive constant solution. In addition, we provide results on the existence and non-existence of positive non-constant solutions of the model. We also demonstrate the Turing instability under some conditions, and find that our model exhibits a diffusion-controlled formation growth of spots, stripes, and holes pattern replication via numerical simulations. One of the most interesting findings is that Turing instability in the model is induced by the density dependent death rate in predator.
Citation: Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang. Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1247-1274. doi: 10.3934/mbe.2014.11.1247
##### References:

show all references

##### References:
 [1] Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel. Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Mathematical Biosciences & Engineering, 2004, 1 (1) : 111-130. doi: 10.3934/mbe.2004.1.111 [2] Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031 [3] Juan Pablo Rincón-Zapatero. Hopf-Lax formula for variational problems with non-constant discount. Journal of Geometric Mechanics, 2009, 1 (3) : 357-367. doi: 10.3934/jgm.2009.1.357 [4] Kais Hamza, Fima C. Klebaner. On nonexistence of non-constant volatility in the Black-Scholes formula. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 829-834. doi: 10.3934/dcdsb.2006.6.829 [5] Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1163-1178. doi: 10.3934/dcdsb.2021085 [6] Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 [7] Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014 [8] R. P. Gupta, Shristi Tiwari, Shivam Saxena. The qualitative behavior of a plankton-fish interaction model with food limited growth rate and non-constant fish harvesting. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2791-2815. doi: 10.3934/dcdsb.2021160 [9] Jian-Jun Xu, Junichiro Shimizu. Asymptotic theory for disc-like crystal growth (II): interfacial instability and pattern formation at early stage of growth. Communications on Pure and Applied Analysis, 2004, 3 (3) : 527-543. doi: 10.3934/cpaa.2004.3.527 [10] Christopher Logan Hambric, Chi-Kwong Li, Diane Christine Pelejo, Junping Shi. Minimum number of non-zero-entries in a stable matrix exhibiting Turing instability. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021128 [11] Gaetana Gambino, Valeria Giunta, Maria Carmela Lombardo, Gianfranco Rubino. Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022063 [12] Renato Soeiro, Abdelrahim Mousa, Alberto A. Pinto. Externality effects in the formation of societies. Journal of Dynamics and Games, 2015, 2 (3&4) : 303-320. doi: 10.3934/jdg.2015007 [13] Nalin Fonseka, Ratnasingham Shivaji, Jerome Goddard, Ⅱ, Quinn A. Morris, Byungjae Son. On the effects of the exterior matrix hostility and a U-shaped density dependent dispersal on a diffusive logistic growth model. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3401-3415. doi: 10.3934/dcdss.2020245 [14] Eduardo Liz, Alfonso Ruiz-Herrera. Delayed population models with Allee effects and exploitation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 83-97. doi: 10.3934/mbe.2015.12.83 [15] Jia Li. Modeling of mosquitoes with dominant or recessive Transgenes and Allee effects. Mathematical Biosciences & Engineering, 2010, 7 (1) : 99-121. doi: 10.3934/mbe.2010.7.99 [16] Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133 [17] Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure and Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001 [18] Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481 [19] Julien Barré, Pierre Degond, Diane Peurichard, Ewelina Zatorska. Modelling pattern formation through differential repulsion. Networks and Heterogeneous Media, 2020, 15 (3) : 307-352. doi: 10.3934/nhm.2020021 [20] Julien Cividini. Pattern formation in 2D traffic flows. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

2018 Impact Factor: 1.313