Citation: |
[1] |
P. A. Abrams, The fallacies of "ratio-dependent" predation, Ecology, 75 (1994), 1842-1850.doi: 10.2307/1939644. |
[2] |
P. A. Abrams and L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?, Trends in Ecology & Evolution, 15 (2000), 337-341.doi: 10.1016/S0169-5347(00)01908-X. |
[3] |
P. Aguirre, E. González-Olivares and E. Sáez, Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect, Nonlinear Analysis: Real World Applications, 10 (2009), 1401-1416.doi: 10.1016/j.nonrwa.2008.01.022. |
[4] |
P. Aguirre, E. González-Olivares and E. Sáez, Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect, SIAM Journal on Applied Mathematics, 69 (2009), 1244-1262.doi: 10.1137/070705210. |
[5] |
H. R. Akçakaya, R. Arditi and L. R. Ginzburg, Ratio-dependent predation: An abstraction that works, Ecology, 76 (1995), 995-1004. |
[6] |
N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations, Journal of Differential Equations, 33 (1979), 201-225.doi: 10.1016/0022-0396(79)90088-3. |
[7] |
W. C. Allee, Animal Aggregations, a Study in General Sociology, University of Chicago Press, Chicago, USA, 1931. |
[8] |
D. Alonso, F. Bartumeus and J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns, Ecology, 83 (2002), 28-34.doi: 10.2307/2680118. |
[9] |
R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, Journal of Theoretical Biology, 139 (1989), 311-326.doi: 10.1016/S0022-5193(89)80211-5. |
[10] |
A. Ardito and P. Ricciardi, Lyapunov functions for a generalized Gause-type model, Journal of Mathematical Biology, 33 (1995), 816-828.doi: 10.1007/BF00187283. |
[11] |
M. Banerjee and S. Banerjee, Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model, Mathematical Biosciences, 236 (2012), 64-76.doi: 10.1016/j.mbs.2011.12.005. |
[12] |
M. Banerjee and S. Petrovskii, Self-organized spatial patterns and chaos in a ratio-dependent predator-prey system, Theoretical Ecology, 4 (2011), 37-53. |
[13] |
M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, Journal of Theoretical Biology, 245 (2007), 220-229.doi: 10.1016/j.jtbi.2006.09.036. |
[14] |
D. L. Benson, J. A. Sherratt and P. K. Maini, Diffusion driven instability in an inhomogeneous domain, Bulletin of Mathematical Biology, 55 (1993), 365-384.doi: 10.1016/S0092-8240(05)80270-8. |
[15] |
A. A. Berryman, The orgins and evolution of predator-prey theory, Ecology, 73 (1992), 1530-1535.doi: 10.2307/1940005. |
[16] |
C. Bianca, Existence of stationary solutions in kinetic models with Gaussian thermostats, Mathematical Methods in the Applied Sciences, 36 (2013), 1768-1775.doi: 10.1002/mma.2722. |
[17] |
D. S Boukal and L. Berec, Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate encounters, Journal of Theoretical Biology, 218 (2002), 375-394.doi: 10.1006/jtbi.2002.3084. |
[18] |
D. S. Boukal, M. W. Sabelis and L. Berec, How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses, Theoretical Population Biology, 72 (2007), 136-147.doi: 10.1016/j.tpb.2006.12.003. |
[19] |
N. F. Britton, Essential Mathematical Biology, Springer, 2003.doi: 10.1007/978-1-4471-0049-2. |
[20] |
K. J. Brown, P. C. Dunne and R. A. Gardner, A semilinear parabolic system arising in the theory of superconductivity, Journal of Differential Equations, 40 (1981), 232-252.doi: 10.1016/0022-0396(81)90020-6. |
[21] |
Y. Cai, W. Wang and J. Wang, Dynamics of a diffusive predator-prey model with additive Allee effect, International Journal of Biomathematics, 5 (2012), 1250023, 11 pp.doi: 10.1142/S1793524511001659. |
[22] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley, London, 2003.doi: 10.1002/0470871296. |
[23] |
E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM Journal of Appllied Mathematics, 35 (1978), 1-16.doi: 10.1137/0135001. |
[24] |
L. B. Crowder and W. E. Cooper, Habitat structural complexity and the interaction between bluegills and their prey, Ecology, 63 (1982), 1802-1813.doi: 10.2307/1940122. |
[25] |
B. Dennis, Allee effects: Population growth, critical density, and the chance of extinction, Natural Resource Modeling, 3 (1989), 481-538. |
[26] |
X. Ding and J. Jiang, Positive periodic solutions in delayed Gause-type predator-prey systems, Journal of Mathematical Analysis and Applications, 339 (2008), 1220-1230.doi: 10.1016/j.jmaa.2007.07.079. |
[27] |
K. Fujii, Complexity-stability relationship of two-prey-one-predator species system model: Local and global stability, Journal of Theoretical Biology, 69 (1977), 613-623.doi: 10.1016/0022-5193(77)90370-8. |
[28] |
M. R. Garvie, Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in Matlab, Bulletin of Mathematical Biology, 69 (2007), 931-956.doi: 10.1007/s11538-006-9062-3. |
[29] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin and New York, 1983.doi: 10.1007/978-3-642-61798-0. |
[30] |
E. González-Olivares, H. Meneses-Alcay, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma and R. Ramos-Jiliberto, Multiple stability and uniqueness of the limit cycle in a Gause-type predator-prey model considering the allee effect on prey, Nonlinear Analysis: Real World Applications, 12 (2011), 2931-2942.doi: 10.1016/j.nonrwa.2011.04.003. |
[31] |
K. Hasík, On a predator-prey system of Gause type, Journal of Mathematical Biology, 60 (2010), 59-74.doi: 10.1007/s00285-009-0257-8. |
[32] |
D. Henry and D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981. |
[33] |
S.-B. Hsu, T.-W. Hwang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, Journal of Mathematical Biology, 42 (2001), 489-506.doi: 10.1007/s002850100079. |
[34] |
T.-W. Hwang, Uniqueness of the limit cycle for Gause-type predator-prey systems, Journal of Mathematical Analysis and Applications, 238 (1999), 179-195.doi: 10.1006/jmaa.1999.6520. |
[35] |
Y. Kang and L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, Journal of Mathematical Biology, 67 (2013), 1227-1259.doi: 10.1007/s00285-012-0584-z. |
[36] |
W. Ko and K. Ryu, A qualitative study on general Gause-type predator-prey models with constant diffusion rates, Journal of Mathematical Analysis and Applications, 344 (2008), 217-230.doi: 10.1016/j.jmaa.2008.03.006. |
[37] |
Y. Kuang, Global stability of Gause-type predator-prey systems, Journal of Mathematical Biology, 28 (1990), 463-474.doi: 10.1007/BF00178329. |
[38] |
Y. Kuang, Rich dynamics of Gause-type ratio-dependent predator-prey system, Fields Institute Communication, 21 (1999), 325-337. |
[39] |
Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 36 (1998), 389-406.doi: 10.1007/s002850050105. |
[40] |
Y. Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems, Mathematical Biosciences, 88 (1988), 67-84.doi: 10.1016/0025-5564(88)90049-1. |
[41] |
S. A. Levin, The problem of pattern and scale in ecology, Ecology, 73 (1992), 1943-1967.doi: 10.1007/978-1-4615-1769-6_15. |
[42] |
M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms, Theoretical Population Biology, 43 (1993), 141-158.doi: 10.1006/tpbi.1993.1007. |
[43] |
C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, Journal of Differential Equations, 72 (1988), 1-27.doi: 10.1016/0022-0396(88)90147-7. |
[44] |
Y. Liu, Geometric criteria for the nonexistence of cycles in Gause-type predator-prey systems, Proceedings of the American Mathematical Society, 133 (2005), 3619-3626.doi: 10.1090/S0002-9939-05-08026-3. |
[45] |
Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, Journal of Differential Equations, 131 (1996), 79-131.doi: 10.1006/jdeq.1996.0157. |
[46] |
A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics, SIAM Review, 44 (2002), 311-370.doi: 10.1137/S0036144502404442. |
[47] |
Z. Mei, Numerical Bifurcation Analysis for Reaction-Diffusion Equations, Springer, 2000.doi: 10.1007/978-3-662-04177-2. |
[48] |
S. M. Moghadas and M. E. Alexander, Dynamics of a generalized Gause-type predator-prey model with a seasonal functional response, Chaos, Solitons & Fractals, 23 (2005), 55-65.doi: 10.1016/j.chaos.2004.04.030. |
[49] |
S. M. Moghadas, M. E. Alexander and B. D. Corbett, A non-standard numerical scheme for a generalized Gause-type predator-prey model, Physica D: Nonlinear Phenomena, 188 (2004), 134-151.doi: 10.1016/S0167-2789(03)00285-9. |
[50] |
S. M. Moghadas and B. D. Corbett, Limit cycles in a generalized Gause-type predator-prey model, Chaos, Solitons & Fractals, 37 (2008), 1343-1355.doi: 10.1016/j.chaos.2006.10.017. |
[51] |
A. Morozov and S. Petrovskii, Excitable population dynamics, biological control failure, and spatiotemporal pattern formation in a model ecosystem, Bulletin of Mathematical Biology, 71 (2009), 863-887.doi: 10.1007/s11538-008-9385-3. |
[52] |
A. Morozov, S. Petrovskii and B.-L. Li, Bifurcations and chaos in a predator-prey system with the Allee effect, Proceedings of the Royal Society of London-B: Biological Sciences, 271 (2004), 1407-1414.doi: 10.1098/rspb.2004.2733. |
[53] |
J. D. Murray, Discussion: Turing's theory of morphogenesis-its influence on modelling biological pattern and form, Bulletin of Mathematical Biology, 52 (1990), 119-152.doi: 10.1007/BF02459571. |
[54] |
J. D. Murray, Mathematical Biology, Springer, New York, USA, 2002.doi: 10.1007/b98869. |
[55] |
C. Neuhauser, Mathematical challenges in spatial ecology, Notices of the AMS, 48 (2001), 1304-1314. |
[56] |
P. Y. H. Pang and M. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proceedings of the Royal Society of Edinburgh-A-Mathematics, 133 (2003), 919-942.doi: 10.1017/S0308210500002742. |
[57] |
P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model, Journal of Differential Equations, 200 (2004), 245-273.doi: 10.1016/j.jde.2004.01.004. |
[58] |
R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case, Journal of Differential Equations, 247 (2009), 866-886.doi: 10.1016/j.jde.2009.03.008. |
[59] |
R. Peng, J. Shi and M. Wang, Stationary pattern of a ratio-dependent food chain model with diffusion, SIAM Journal on Applied Mathematics, 67 (2007), 1479-1503.doi: 10.1137/05064624X. |
[60] |
R. Peng, J. Shi and M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 1471.doi: 10.1088/0951-7715/21/7/006. |
[61] |
A. M. de Roos, E. McCauley and W. G. Wilson, Pattern formation and the spatial scale of interaction between predators and their prey, Theoretical Population Biology, 53 (1998), 108-130. |
[62] |
J. F. Savino and R. A. Stein, Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation, Transactions of the American Fisheries Society, 111 (1982), 255-266.doi: 10.1577/1548-8659(1982)111<255:PIBLBA>2.0.CO;2. |
[63] |
A. Sikder and A. B. Roy, Persistence of a generalized Gause-type two prey-two predator pair linked by competition, Mathematical Biosciences, 122 (1994), 1-23.doi: 10.1016/0025-5564(94)90080-9. |
[64] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1994.doi: 10.1007/978-1-4612-0873-0. |
[65] |
R. A. Stein, Selective predation, optimal foraging, and the predator-prey interaction between fish and crayfish, Ecology, 58 (1977), 1237-1253.doi: 10.2307/1935078. |
[66] |
P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends in Ecology & Evolution, 14 (1999), 401-405.doi: 10.1016/S0169-5347(99)01684-5. |
[67] |
P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?, Oikos, (1999), 185-190.doi: 10.2307/3547011. |
[68] |
J. P. Stover, B. E. Kendall and G. A. Fox, Demographic heterogeneity impacts density-dependent population dynamics, Theoretical Ecology, 5 (2012), 297-309.doi: 10.1007/s12080-011-0129-x. |
[69] |
P. Turchin, Complex Population Dynamics: A Theoretical/Empirical Synthesis, Princeton University Press, 2003. |
[70] |
A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London-B, 237 (1952), 37-72.doi: 10.1016/S0092-8240(05)80008-4. |
[71] |
R. K. Upadhyay, V. Volpert and N. K. Thakur, Propagation of turing patterns in a plankton model, Journal of Biological Dynamics, 6 (2012), 524-538.doi: 10.1080/17513758.2012.655327. |
[72] |
J. Wang, J. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, Journal of Differential Equations, 251 (2011), 1276-1304.doi: 10.1016/j.jde.2011.03.004. |
[73] |
M. Wang, Nonlinear Partial Differential Equations of Parabolic Type, Science Press, Beijing, 1993. |
[74] |
M. Wang, Stationary patterns of strongly coupled prey-predator models, Journal of Mathematical Analysis and Applications, 292 (2004), 484-505.doi: 10.1016/j.jmaa.2003.12.027. |
[75] |
M. Wang, Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion, Physica D, 196 (2004), 172-192.doi: 10.1016/j.physd.2004.05.007. |
[76] |
M. Wang, Stationary patterns caused by cross-diffusion for a three-species prey-predator model, Computers and Mathematics with Applications, 52 (2006), 707-720.doi: 10.1016/j.camwa.2006.10.009. |
[77] |
W. Wang, Q. Liu and Z. Jin, Spatiotemporal complexity of a ratio-dependent predator-prey system, Physical Review E, 75 (2007), 051913.doi: 10.1103/PhysRevE.75.051913. |
[78] |
W. Wang, L. Zhang, H. Wang and Z. Li, Pattern formation of a predator-prey system with Ivlev-type functional response, Ecological Modelling, 221 (2010), 131-140.doi: 10.1016/j.ecolmodel.2009.09.011. |
[79] |
Z. Wu, J. Yin and C. Wang, Elliptic and Parabolic Equations, World Scientific, 2006.doi: 10.1142/6238. |
[80] |
D. Xiao and S. Ruan, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM Journal on Applied Mathematics, 61 (2001), 1445-1472.doi: 10.1137/S0036139999361896. |
[81] |
R. Xu, M. A. J. Chaplain and F. A. Davidson, Global stability of a Lotka-Volterra type predator-prey model with stage structure and time delay, Applied Mathematics and Computation, 159 (2004), 863-880.doi: 10.1016/j.amc.2003.11.008. |
[82] |
S. Zhou, Y. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects, Theoretical Population Biology, 67 (2005), 23-31.doi: 10.1016/j.tpb.2004.06.007. |