2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295

Epidemic models for complex networks with demographics

1. 

Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi 030051, China

2. 

LAMPS and CDM, Department of Mathematics and Statistics, York University, Toronto, ON, M3J1P3, Canada

Received  March 2014 Revised  June 2014 Published  September 2014

In this paper, we propose and study network epidemic models with demographics for disease transmission. We obtain the formula of the basic reproduction number $R_{0}$ of infection for an SIS model with births or recruitment and death rate. We prove that if $R_{0}\leq1$, infection-free equilibrium of SIS model is globally asymptotically stable; if $R_{0}>1$, there exists a unique endemic equilibrium which is globally asymptotically stable. It is also found that demographics has great effect on basic reproduction number $R_{0}$. Furthermore, the degree distribution of population varies with time before it reaches the stationary state.
Citation: Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295
References:
[1]

R. M. Anderson and R. M. May, Infectious Diseases of Humans,, Oxford University Press, (1992).   Google Scholar

[2]

A.-L. Barabasi and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[3]

M. Barthelemy, A. Barrat, R. Pastor-Satorras and A. Vespignani, Dynamical patterns of epidemic outbreaks in complex heterogeneous networks,, Journal of Theoretical Biology, 235 (2005), 275.  doi: 10.1016/j.jtbi.2005.01.011.  Google Scholar

[4]

E. Ben-Naim and P. L. Krapivsky, Addition-deletion networks,, J. Phys. A: Math. Theor., 40 (2007), 8607.  doi: 10.1088/1751-8113/40/30/001.  Google Scholar

[5]

M. Boguna, R. Pastor-Satorras and A. Vespignani, Epidemic spreading in complex networks with degree correlations,, e-print cond-mat/0301149, (2003).   Google Scholar

[6]

S. Busenberg and P. van den Driessche, Analysis of a disease transmission model in a population with varying size,, J. Math. Biol., 28 (1990), 257.  doi: 10.1007/BF00178776.  Google Scholar

[7]

C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models,, in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, (1993), 33.   Google Scholar

[8]

K. Emrah, Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions,, Applied Mathematics and Computation, 197 (2008), 345.  doi: 10.1016/j.amc.2007.07.046.  Google Scholar

[9]

L. Q. Gao and H. W. Hethcote, Disease transmission models with density-dependent demographics,, J. Math. Biol., 30 (1992), 717.  doi: 10.1007/BF00173265.  Google Scholar

[10]

L. Hufnagel, D. Brockmann and T. Geisel, Forecast and control of epidemics in a globalized world,, Proc. Natl. Acad. Sci. U.S.A., 101 (2004).  doi: 10.1073/pnas.0308344101.  Google Scholar

[11]

Y. Jin and W. Wang, The effect of population dispersal on the spread of a disease,, J. Math. Anal. Appl., 308 (2005), 343.  doi: 10.1016/j.jmaa.2005.01.034.  Google Scholar

[12]

J. Joo and J. L. Lebowitz, Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation,, Phys. Rev. E, 69 (2004).  doi: 10.1103/PhysRevE.69.066105.  Google Scholar

[13]

M. J. Keeling and K. T. D. Eames, Networks and epidemic models,, J. R. Soc. Interface, 2 (2005), 295.  doi: 10.1098/rsif.2005.0051.  Google Scholar

[14]

M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals,, Princeton University Press, (2007).   Google Scholar

[15]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics,, Proc. R. Soc. A, 115 (1927), 700.  doi: 10.1098/rspa.1927.0118.  Google Scholar

[16]

I. Z. Kiss, D. M. Green and R. R. Kao, Heterogeneity and multiple of transmission on final epidemic size,, Mathematical Biosciences, 203 (2006), 124.  doi: 10.1016/j.mbs.2006.03.002.  Google Scholar

[17]

I. Z. Kiss, P. L. Simon and R. R. Kao, A contact-network-based formulation of a preferential mixing model,, Bulletin of Mathematical Biology, 71 (2009), 888.  doi: 10.1007/s11538-008-9386-2.  Google Scholar

[18]

J. Lindquist, J. Ma, P. van den Driessche and F. H. Willeboords, Network evolution by different rewiring schemes,, Physica D, 238 (2009), 370.  doi: 10.1016/j.physd.2008.10.016.  Google Scholar

[19]

Z. Ma and J. Li, Dynamical Modeling and Anaylsis of Epidemics,, World Scientific, (2009).   Google Scholar

[20]

R. M. May and A. L. Lloyd, Infection dynamics on scale-free networks,, Phys. Rev. E, 64 (2001).  doi: 10.1103/PhysRevE.64.066112.  Google Scholar

[21]

Y. Moreno, R. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks,, Eur. Phys. J. B, 26 (2002), 521.  doi: 10.1140/epjb/e20020122.  Google Scholar

[22]

R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission,, Phys. Rev. E, 70 (2004).  doi: 10.1103/PhysRevE.70.030902.  Google Scholar

[23]

R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.066117.  Google Scholar

[24]

R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks,, Phys. Rev. Let., 86 (2001).  doi: 10.1103/PhysRevLett.86.3200.  Google Scholar

[25]

M. G. Roberta, An SEI model with density-dependent demographics and epidemiology,, IMA Journal of Mathematics Applied in Medicine & Biology, 13 (1996), 245.  doi: 10.1093/imammb13.4.245.  Google Scholar

[26]

L. B. Shaw and I. B. Schwartz, Fluctuating epidemics on adaptive networks,, Phys. Rev. E, 77 (2008).  doi: 10.1103/PhysRevE.77.066101.  Google Scholar

[27]

H. L. Smith, On the asymptotic behavior of a class of deterministic models of cooperating species,, SIAM J. Appl. Math., 46 (1986), 368.  doi: 10.1137/0146025.  Google Scholar

[28]

H. R. Thieme, Asymptotically autonomous differential equations in the plane,, Rocky Mountain J. Math., 24 (1994), 351.  doi: 10.1216/rmjm/1181072470.  Google Scholar

[29]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[30]

L. Wang and G. Z. Dai, Global stability of virus spreading in complex heterogeneous networks,, Siam J. Appl. Math., 68 (2008), 1495.  doi: 10.1137/070694582.  Google Scholar

[31]

W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment,, Mathematical Biosciences, 190 (2004), 97.  doi: 10.1016/j.mbs.2002.11.001.  Google Scholar

[32]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

[33]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Canad. Appl. Math. Quart., 4 (1996), 421.   Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, Infectious Diseases of Humans,, Oxford University Press, (1992).   Google Scholar

[2]

A.-L. Barabasi and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[3]

M. Barthelemy, A. Barrat, R. Pastor-Satorras and A. Vespignani, Dynamical patterns of epidemic outbreaks in complex heterogeneous networks,, Journal of Theoretical Biology, 235 (2005), 275.  doi: 10.1016/j.jtbi.2005.01.011.  Google Scholar

[4]

E. Ben-Naim and P. L. Krapivsky, Addition-deletion networks,, J. Phys. A: Math. Theor., 40 (2007), 8607.  doi: 10.1088/1751-8113/40/30/001.  Google Scholar

[5]

M. Boguna, R. Pastor-Satorras and A. Vespignani, Epidemic spreading in complex networks with degree correlations,, e-print cond-mat/0301149, (2003).   Google Scholar

[6]

S. Busenberg and P. van den Driessche, Analysis of a disease transmission model in a population with varying size,, J. Math. Biol., 28 (1990), 257.  doi: 10.1007/BF00178776.  Google Scholar

[7]

C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models,, in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, (1993), 33.   Google Scholar

[8]

K. Emrah, Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions,, Applied Mathematics and Computation, 197 (2008), 345.  doi: 10.1016/j.amc.2007.07.046.  Google Scholar

[9]

L. Q. Gao and H. W. Hethcote, Disease transmission models with density-dependent demographics,, J. Math. Biol., 30 (1992), 717.  doi: 10.1007/BF00173265.  Google Scholar

[10]

L. Hufnagel, D. Brockmann and T. Geisel, Forecast and control of epidemics in a globalized world,, Proc. Natl. Acad. Sci. U.S.A., 101 (2004).  doi: 10.1073/pnas.0308344101.  Google Scholar

[11]

Y. Jin and W. Wang, The effect of population dispersal on the spread of a disease,, J. Math. Anal. Appl., 308 (2005), 343.  doi: 10.1016/j.jmaa.2005.01.034.  Google Scholar

[12]

J. Joo and J. L. Lebowitz, Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation,, Phys. Rev. E, 69 (2004).  doi: 10.1103/PhysRevE.69.066105.  Google Scholar

[13]

M. J. Keeling and K. T. D. Eames, Networks and epidemic models,, J. R. Soc. Interface, 2 (2005), 295.  doi: 10.1098/rsif.2005.0051.  Google Scholar

[14]

M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals,, Princeton University Press, (2007).   Google Scholar

[15]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics,, Proc. R. Soc. A, 115 (1927), 700.  doi: 10.1098/rspa.1927.0118.  Google Scholar

[16]

I. Z. Kiss, D. M. Green and R. R. Kao, Heterogeneity and multiple of transmission on final epidemic size,, Mathematical Biosciences, 203 (2006), 124.  doi: 10.1016/j.mbs.2006.03.002.  Google Scholar

[17]

I. Z. Kiss, P. L. Simon and R. R. Kao, A contact-network-based formulation of a preferential mixing model,, Bulletin of Mathematical Biology, 71 (2009), 888.  doi: 10.1007/s11538-008-9386-2.  Google Scholar

[18]

J. Lindquist, J. Ma, P. van den Driessche and F. H. Willeboords, Network evolution by different rewiring schemes,, Physica D, 238 (2009), 370.  doi: 10.1016/j.physd.2008.10.016.  Google Scholar

[19]

Z. Ma and J. Li, Dynamical Modeling and Anaylsis of Epidemics,, World Scientific, (2009).   Google Scholar

[20]

R. M. May and A. L. Lloyd, Infection dynamics on scale-free networks,, Phys. Rev. E, 64 (2001).  doi: 10.1103/PhysRevE.64.066112.  Google Scholar

[21]

Y. Moreno, R. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks,, Eur. Phys. J. B, 26 (2002), 521.  doi: 10.1140/epjb/e20020122.  Google Scholar

[22]

R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission,, Phys. Rev. E, 70 (2004).  doi: 10.1103/PhysRevE.70.030902.  Google Scholar

[23]

R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.066117.  Google Scholar

[24]

R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks,, Phys. Rev. Let., 86 (2001).  doi: 10.1103/PhysRevLett.86.3200.  Google Scholar

[25]

M. G. Roberta, An SEI model with density-dependent demographics and epidemiology,, IMA Journal of Mathematics Applied in Medicine & Biology, 13 (1996), 245.  doi: 10.1093/imammb13.4.245.  Google Scholar

[26]

L. B. Shaw and I. B. Schwartz, Fluctuating epidemics on adaptive networks,, Phys. Rev. E, 77 (2008).  doi: 10.1103/PhysRevE.77.066101.  Google Scholar

[27]

H. L. Smith, On the asymptotic behavior of a class of deterministic models of cooperating species,, SIAM J. Appl. Math., 46 (1986), 368.  doi: 10.1137/0146025.  Google Scholar

[28]

H. R. Thieme, Asymptotically autonomous differential equations in the plane,, Rocky Mountain J. Math., 24 (1994), 351.  doi: 10.1216/rmjm/1181072470.  Google Scholar

[29]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[30]

L. Wang and G. Z. Dai, Global stability of virus spreading in complex heterogeneous networks,, Siam J. Appl. Math., 68 (2008), 1495.  doi: 10.1137/070694582.  Google Scholar

[31]

W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment,, Mathematical Biosciences, 190 (2004), 97.  doi: 10.1016/j.mbs.2002.11.001.  Google Scholar

[32]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

[33]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Canad. Appl. Math. Quart., 4 (1996), 421.   Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[3]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[4]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[5]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[6]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[9]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[10]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[15]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[16]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[17]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[18]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (31)

Other articles
by authors

[Back to Top]