2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295

Epidemic models for complex networks with demographics

1. 

Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi 030051, China

2. 

LAMPS and CDM, Department of Mathematics and Statistics, York University, Toronto, ON, M3J1P3, Canada

Received  March 2014 Revised  June 2014 Published  September 2014

In this paper, we propose and study network epidemic models with demographics for disease transmission. We obtain the formula of the basic reproduction number $R_{0}$ of infection for an SIS model with births or recruitment and death rate. We prove that if $R_{0}\leq1$, infection-free equilibrium of SIS model is globally asymptotically stable; if $R_{0}>1$, there exists a unique endemic equilibrium which is globally asymptotically stable. It is also found that demographics has great effect on basic reproduction number $R_{0}$. Furthermore, the degree distribution of population varies with time before it reaches the stationary state.
Citation: Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295
References:
[1]

R. M. Anderson and R. M. May, Infectious Diseases of Humans,, Oxford University Press, (1992). Google Scholar

[2]

A.-L. Barabasi and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509. doi: 10.1126/science.286.5439.509. Google Scholar

[3]

M. Barthelemy, A. Barrat, R. Pastor-Satorras and A. Vespignani, Dynamical patterns of epidemic outbreaks in complex heterogeneous networks,, Journal of Theoretical Biology, 235 (2005), 275. doi: 10.1016/j.jtbi.2005.01.011. Google Scholar

[4]

E. Ben-Naim and P. L. Krapivsky, Addition-deletion networks,, J. Phys. A: Math. Theor., 40 (2007), 8607. doi: 10.1088/1751-8113/40/30/001. Google Scholar

[5]

M. Boguna, R. Pastor-Satorras and A. Vespignani, Epidemic spreading in complex networks with degree correlations,, e-print cond-mat/0301149, (2003). Google Scholar

[6]

S. Busenberg and P. van den Driessche, Analysis of a disease transmission model in a population with varying size,, J. Math. Biol., 28 (1990), 257. doi: 10.1007/BF00178776. Google Scholar

[7]

C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models,, in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, (1993), 33. Google Scholar

[8]

K. Emrah, Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions,, Applied Mathematics and Computation, 197 (2008), 345. doi: 10.1016/j.amc.2007.07.046. Google Scholar

[9]

L. Q. Gao and H. W. Hethcote, Disease transmission models with density-dependent demographics,, J. Math. Biol., 30 (1992), 717. doi: 10.1007/BF00173265. Google Scholar

[10]

L. Hufnagel, D. Brockmann and T. Geisel, Forecast and control of epidemics in a globalized world,, Proc. Natl. Acad. Sci. U.S.A., 101 (2004). doi: 10.1073/pnas.0308344101. Google Scholar

[11]

Y. Jin and W. Wang, The effect of population dispersal on the spread of a disease,, J. Math. Anal. Appl., 308 (2005), 343. doi: 10.1016/j.jmaa.2005.01.034. Google Scholar

[12]

J. Joo and J. L. Lebowitz, Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation,, Phys. Rev. E, 69 (2004). doi: 10.1103/PhysRevE.69.066105. Google Scholar

[13]

M. J. Keeling and K. T. D. Eames, Networks and epidemic models,, J. R. Soc. Interface, 2 (2005), 295. doi: 10.1098/rsif.2005.0051. Google Scholar

[14]

M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals,, Princeton University Press, (2007). Google Scholar

[15]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics,, Proc. R. Soc. A, 115 (1927), 700. doi: 10.1098/rspa.1927.0118. Google Scholar

[16]

I. Z. Kiss, D. M. Green and R. R. Kao, Heterogeneity and multiple of transmission on final epidemic size,, Mathematical Biosciences, 203 (2006), 124. doi: 10.1016/j.mbs.2006.03.002. Google Scholar

[17]

I. Z. Kiss, P. L. Simon and R. R. Kao, A contact-network-based formulation of a preferential mixing model,, Bulletin of Mathematical Biology, 71 (2009), 888. doi: 10.1007/s11538-008-9386-2. Google Scholar

[18]

J. Lindquist, J. Ma, P. van den Driessche and F. H. Willeboords, Network evolution by different rewiring schemes,, Physica D, 238 (2009), 370. doi: 10.1016/j.physd.2008.10.016. Google Scholar

[19]

Z. Ma and J. Li, Dynamical Modeling and Anaylsis of Epidemics,, World Scientific, (2009). Google Scholar

[20]

R. M. May and A. L. Lloyd, Infection dynamics on scale-free networks,, Phys. Rev. E, 64 (2001). doi: 10.1103/PhysRevE.64.066112. Google Scholar

[21]

Y. Moreno, R. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks,, Eur. Phys. J. B, 26 (2002), 521. doi: 10.1140/epjb/e20020122. Google Scholar

[22]

R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.030902. Google Scholar

[23]

R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks,, Phys. Rev. E, 63 (2001). doi: 10.1103/PhysRevE.63.066117. Google Scholar

[24]

R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks,, Phys. Rev. Let., 86 (2001). doi: 10.1103/PhysRevLett.86.3200. Google Scholar

[25]

M. G. Roberta, An SEI model with density-dependent demographics and epidemiology,, IMA Journal of Mathematics Applied in Medicine & Biology, 13 (1996), 245. doi: 10.1093/imammb13.4.245. Google Scholar

[26]

L. B. Shaw and I. B. Schwartz, Fluctuating epidemics on adaptive networks,, Phys. Rev. E, 77 (2008). doi: 10.1103/PhysRevE.77.066101. Google Scholar

[27]

H. L. Smith, On the asymptotic behavior of a class of deterministic models of cooperating species,, SIAM J. Appl. Math., 46 (1986), 368. doi: 10.1137/0146025. Google Scholar

[28]

H. R. Thieme, Asymptotically autonomous differential equations in the plane,, Rocky Mountain J. Math., 24 (1994), 351. doi: 10.1216/rmjm/1181072470. Google Scholar

[29]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[30]

L. Wang and G. Z. Dai, Global stability of virus spreading in complex heterogeneous networks,, Siam J. Appl. Math., 68 (2008), 1495. doi: 10.1137/070694582. Google Scholar

[31]

W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment,, Mathematical Biosciences, 190 (2004), 97. doi: 10.1016/j.mbs.2002.11.001. Google Scholar

[32]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003). doi: 10.1007/978-0-387-21761-1. Google Scholar

[33]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Canad. Appl. Math. Quart., 4 (1996), 421. Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, Infectious Diseases of Humans,, Oxford University Press, (1992). Google Scholar

[2]

A.-L. Barabasi and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509. doi: 10.1126/science.286.5439.509. Google Scholar

[3]

M. Barthelemy, A. Barrat, R. Pastor-Satorras and A. Vespignani, Dynamical patterns of epidemic outbreaks in complex heterogeneous networks,, Journal of Theoretical Biology, 235 (2005), 275. doi: 10.1016/j.jtbi.2005.01.011. Google Scholar

[4]

E. Ben-Naim and P. L. Krapivsky, Addition-deletion networks,, J. Phys. A: Math. Theor., 40 (2007), 8607. doi: 10.1088/1751-8113/40/30/001. Google Scholar

[5]

M. Boguna, R. Pastor-Satorras and A. Vespignani, Epidemic spreading in complex networks with degree correlations,, e-print cond-mat/0301149, (2003). Google Scholar

[6]

S. Busenberg and P. van den Driessche, Analysis of a disease transmission model in a population with varying size,, J. Math. Biol., 28 (1990), 257. doi: 10.1007/BF00178776. Google Scholar

[7]

C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models,, in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, (1993), 33. Google Scholar

[8]

K. Emrah, Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions,, Applied Mathematics and Computation, 197 (2008), 345. doi: 10.1016/j.amc.2007.07.046. Google Scholar

[9]

L. Q. Gao and H. W. Hethcote, Disease transmission models with density-dependent demographics,, J. Math. Biol., 30 (1992), 717. doi: 10.1007/BF00173265. Google Scholar

[10]

L. Hufnagel, D. Brockmann and T. Geisel, Forecast and control of epidemics in a globalized world,, Proc. Natl. Acad. Sci. U.S.A., 101 (2004). doi: 10.1073/pnas.0308344101. Google Scholar

[11]

Y. Jin and W. Wang, The effect of population dispersal on the spread of a disease,, J. Math. Anal. Appl., 308 (2005), 343. doi: 10.1016/j.jmaa.2005.01.034. Google Scholar

[12]

J. Joo and J. L. Lebowitz, Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation,, Phys. Rev. E, 69 (2004). doi: 10.1103/PhysRevE.69.066105. Google Scholar

[13]

M. J. Keeling and K. T. D. Eames, Networks and epidemic models,, J. R. Soc. Interface, 2 (2005), 295. doi: 10.1098/rsif.2005.0051. Google Scholar

[14]

M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals,, Princeton University Press, (2007). Google Scholar

[15]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics,, Proc. R. Soc. A, 115 (1927), 700. doi: 10.1098/rspa.1927.0118. Google Scholar

[16]

I. Z. Kiss, D. M. Green and R. R. Kao, Heterogeneity and multiple of transmission on final epidemic size,, Mathematical Biosciences, 203 (2006), 124. doi: 10.1016/j.mbs.2006.03.002. Google Scholar

[17]

I. Z. Kiss, P. L. Simon and R. R. Kao, A contact-network-based formulation of a preferential mixing model,, Bulletin of Mathematical Biology, 71 (2009), 888. doi: 10.1007/s11538-008-9386-2. Google Scholar

[18]

J. Lindquist, J. Ma, P. van den Driessche and F. H. Willeboords, Network evolution by different rewiring schemes,, Physica D, 238 (2009), 370. doi: 10.1016/j.physd.2008.10.016. Google Scholar

[19]

Z. Ma and J. Li, Dynamical Modeling and Anaylsis of Epidemics,, World Scientific, (2009). Google Scholar

[20]

R. M. May and A. L. Lloyd, Infection dynamics on scale-free networks,, Phys. Rev. E, 64 (2001). doi: 10.1103/PhysRevE.64.066112. Google Scholar

[21]

Y. Moreno, R. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks,, Eur. Phys. J. B, 26 (2002), 521. doi: 10.1140/epjb/e20020122. Google Scholar

[22]

R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.030902. Google Scholar

[23]

R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks,, Phys. Rev. E, 63 (2001). doi: 10.1103/PhysRevE.63.066117. Google Scholar

[24]

R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks,, Phys. Rev. Let., 86 (2001). doi: 10.1103/PhysRevLett.86.3200. Google Scholar

[25]

M. G. Roberta, An SEI model with density-dependent demographics and epidemiology,, IMA Journal of Mathematics Applied in Medicine & Biology, 13 (1996), 245. doi: 10.1093/imammb13.4.245. Google Scholar

[26]

L. B. Shaw and I. B. Schwartz, Fluctuating epidemics on adaptive networks,, Phys. Rev. E, 77 (2008). doi: 10.1103/PhysRevE.77.066101. Google Scholar

[27]

H. L. Smith, On the asymptotic behavior of a class of deterministic models of cooperating species,, SIAM J. Appl. Math., 46 (1986), 368. doi: 10.1137/0146025. Google Scholar

[28]

H. R. Thieme, Asymptotically autonomous differential equations in the plane,, Rocky Mountain J. Math., 24 (1994), 351. doi: 10.1216/rmjm/1181072470. Google Scholar

[29]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[30]

L. Wang and G. Z. Dai, Global stability of virus spreading in complex heterogeneous networks,, Siam J. Appl. Math., 68 (2008), 1495. doi: 10.1137/070694582. Google Scholar

[31]

W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment,, Mathematical Biosciences, 190 (2004), 97. doi: 10.1016/j.mbs.2002.11.001. Google Scholar

[32]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003). doi: 10.1007/978-0-387-21761-1. Google Scholar

[33]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Canad. Appl. Math. Quart., 4 (1996), 421. Google Scholar

[1]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[2]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[3]

Qingming Gou, Wendi Wang. Global stability of two epidemic models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 333-345. doi: 10.3934/dcdsb.2007.8.333

[4]

Junyuan Yang, Yuming Chen, Jiming Liu. Stability analysis of a two-strain epidemic model on complex networks with latency. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2851-2866. doi: 10.3934/dcdsb.2016076

[5]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347

[6]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[7]

Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393

[8]

Péter L. Simon, Istvan Z. Kiss. On bounding exact models of epidemic spread on networks. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 2005-2020. doi: 10.3934/dcdsb.2018192

[9]

Shouying Huang, Jifa Jiang. Epidemic dynamics on complex networks with general infection rate and immune strategies. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2071-2090. doi: 10.3934/dcdsb.2018226

[10]

Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang. Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2795-2812. doi: 10.3934/dcdsb.2017151

[11]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 61-74. doi: 10.3934/dcdsb.2011.15.61

[12]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[13]

Rosa M. Benito, Regino Criado, Juan C. Losada, Miguel Romance. Preface: "New trends, models and applications in complex and multiplex networks". Networks & Heterogeneous Media, 2015, 10 (1) : i-iii. doi: 10.3934/nhm.2015.10.1i

[14]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[15]

Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393

[16]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[17]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[18]

E. Almaraz, A. Gómez-Corral. On SIR-models with Markov-modulated events: Length of an outbreak, total size of the epidemic and number of secondary infections. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2153-2176. doi: 10.3934/dcdsb.2018229

[19]

Radek Erban, Hyung Ju Hwang. Global existence results for complex hyperbolic models of bacterial chemotaxis. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1239-1260. doi: 10.3934/dcdsb.2006.6.1239

[20]

Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 635-642. doi: 10.3934/dcdsb.2004.4.635

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]