\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Modeling the impact of twitter on influenza epidemics

Abstract / Introduction Related Papers Cited by
  • Influenza remains a serious public-health problem worldwide. The rising popularity and scale of social networking sites such as Twitter may play an important role in detecting, affecting, and predicting influenza epidemics. In this paper, we develop a simple mathematical model including the dynamics of ``tweets'' --- short, 140-character Twitter messages that may enhance the awareness of disease, change individual's behavior, and reduce the transmission of disease among a population during an influenza season. We analyze the model by deriving the basic reproductive number and proving the stability of the steady states. A Hopf bifurcation occurs when a threshold curve is crossed, which suggests the possibility of multiple outbreaks of influenza. We also perform numerical simulations, conduct sensitivity test on a few parameters related to tweets, and compare modeling predictions with surveillance data of influenza-like illness reported cases and the percentage of tweets self-reporting flu during the 2009 H1N1 flu outbreak in England and Wales. These results show that social media programs like Twitter may serve as a good indicator of seasonal influenza epidemics and influence the emergence and spread of the disease.
    Mathematics Subject Classification: Primary: 92D25, 92D30; Secondary: 34D20, 34C23, 91C99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]
    [2]

    H. Achrekar, A. Gandhe, R. Lazarus, S. Yu and B. Liu, Twitter improves seasonal influenza prediction, HEALTHINF, SciTePress, (2012), 61-70.

    [3]

    M. Ajelli, S. Merler, A. Pugliese and C. Rizzo, Model predictions and evaluation of possible control strategies for the 2009 A/H1N1v influenza pandemic in Italy, Epidemiol. Infect., 139 (2011), 68-79.doi: 10.1017/S0950268810001317.

    [4]

    E. Aramaki, S. Maskawa and M. Morita, Twitter catches the flu: Detecting influenza epidemics using Twitter, Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, (2011), 1568-1576.

    [5]

    M. Baguelin, A. J. Hoek, M. Jit, S. Flasche, P. J. White and W. J. Edmunds, Vaccination against pandemic influenza A/H1N1v in England: A real-time economic evaluation, Vaccine, 28 (2010), 2370-2384.doi: 10.1016/j.vaccine.2010.01.002.

    [6]

    D. Balcan, H. Hu, B. Goncalves, P. Bajardi, C. Poletto, J. J. Ramasco, D. Paolotti, N. Perra, M. Tizzoni, W. V. Broeck, V. Colizza and A. Vespignani, Seasonal transmission potential and activity peaks of the new influenza A(H1N1): A Monte Carlo likelihood analysis based on human mobility, BMC Medicine, 7 (2009), 45.doi: 10.1186/1741-7015-7-45.

    [7]

    J. Cain, F. Romanelli and B. Fox, Pharmacy, social media, and health: Opportunity for impact, J. Am. Pharm. Assoc., 50 (2010), 745-751.

    [8]

    Centers for Disease Control and Prevention (CDC), Interim guidance for clinicians on identifying and caring for patients with swine-origin influenza A (H1N1) virus infection, (2009).

    [9]

    C. M. Chew and G. Eysenbach, Pandemics in the age of Twitter: Content analysis of tweets during the 2009 H1N1 outbreak, PLoS One, 5 (2010), e14118.doi: 10.1371/journal.pone.0014118.

    [10]

    J. Cui, Y. Sun and H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equ., 20 (2008), 31-53.doi: 10.1007/s10884-007-9075-0.

    [11]

    A. Culotta, Towards detecting influenza epidemics by analyzing Twitter messages, Proceedings of the First Workshop on Social Media Analytics, (2012), 115-122.doi: 10.1145/1964858.1964874.

    [12]

    D. Currie, Public health leaders using social media to convey emergencies: New tools a boon, The Nation's Health, 39 (2009), 1-10.

    [13]

    L. Donelle and R. G. Booth, Health tweets: an exploration of health promotion on twitter, Online J. Issues Nurs., 17 (2012), manuscript 4.doi: 10.3912/OJIN.Vol17No03Man04.

    [14]

    N. M. Ferguson, D. A. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. Iamsirithaworn and D. S. Burke, Strategies for containing an emerging influenza pandemic in Southeast Asia, Nature, 437 (2005), 209-214.doi: 10.1038/nature04017.

    [15]

    N. M. Ferguson, D. A. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley and D. S. Burke, Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448-452.doi: 10.1038/nature04795.

    [16]

    S. Funk, M. Salathe and V. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. R. Soc. Interface, 7 (2010), 1247-1256.doi: 10.1098/rsif.2010.0142.

    [17]

    S. Funk, E. Gilad, C. Watkins and V. A. Jansen, The spread of awareness and its impact on epidemic outbreaks, PNAS, 106 (2009), 6872-6877.doi: 10.1073/pnas.0810762106.

    [18]

    J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski and L. Brilliant, Detecting influenza epidemics using search engine query data, Nature, 457 (2009), 1012-1014.doi: 10.1038/nature07634.

    [19]

    M. Z. Gojovic, B. Sander, D. Fisman, M. D. Krahn and C. T. Bauch, Modelling mitigation strategies for pandemic (H1N1) 2009, CMAJ, 181 (2009), 673-680.doi: 10.1503/cmaj.091641.

    [20]

    M. E. Halloran, N. M. Ferguson, S. Eubank, I. M. Longini, Jr., D. A. Cummings, B. Lewis, S. Xu, C. Fraser, A. Vullikanti, T. C. Germann, D. Wagener, R. Beckman, K. Kadau, C. Barrett, C. A. Macken, D. S. Burke and P. Cooley, Modeling targeted layered containment of an influenza pandemic in the United States, PNAS, 105 (2008), 4639-4644.doi: 10.1073/pnas.0706849105.

    [21]

    N. Heaivilin, B. Gerbert, J. E. Page and J. L. Gibbs, Public health surveillance of dental pain via Twitter, J. Dent. Res., 90(9) (2011), 1047-1051.doi: 10.1177/0022034511415273.

    [22]

    H. Hirose and L. Wang, Prediction of infectious disease spread using Twitter: A case of influenza, The Fifth International Symposium on Parallel Architectures, Algorithms and Programming, (2012), 100-105.doi: 10.1109/PAAP.2012.23.

    [23]

    C. Holt, Emerging technologies: Web 2.0, Health Information Management Journal, 40 (2011), 33-35.

    [24]

    A. Java, X. Song, T. Finin and B. Tseng, Why we Twitter: Understanding Microblogging Usage and Communities, in Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, New York, ACM Press, 2007, 56-65.doi: 10.1145/1348549.1348556.

    [25]

    V. Lakshmikantham, S. Leela and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Marcel Dekker, Inc., New York and Basel, 1989.

    [26]

    J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.

    [27]

    B. Y. Lee, S. T. Brown, G. W. Korch, P. C. Cooley, R. K. Zimmerman, W. D. Wheaton, S. M. Zimmer, J. J. Grefenstette, R. R. Bailey, T. M. Assi and D. S. Burke, A computer simulation of vaccine prioritization, allocation, and rationing during the 2009 H1N1 influenza pandemic, Vaccine, 28 (2010), 4875-4879.doi: 10.1016/j.vaccine.2010.05.002.

    [28]

    S. Leekha, N. L. Zitterkopf, M. J. Espy, T. F. Smith, R. L. Thompson and P. Sampathkumar, Duration of influenza A virus shedding in hospitalized patients and implications for infection control, Infect. Cont. Hosp. Ep., 28 (2007), 1071-1076.doi: 10.1086/520101.

    [29]

    J. Li, D. Blakeley and R. J. Smith?, The failure of $R_0$, Computational and Mathematical Methods in Medicine, (2011), Art. ID 527610, 17 pp.doi: 10.1155/2011/527610.

    [30]

    R. Liu, J. Wu and H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Methods Med., 8 (2007), 153-164.doi: 10.1080/17486700701425870.

    [31]

    Y. Liu and J. Cui, The impact of media coverage on the dynamics of infectious disease, Int. J. Biomath., 1 (2008), 65-74.doi: 10.1142/S1793524508000023.

    [32]

    I. M. Longini, Jr., M. E. Halloran, A. Nizam and Y. Yang, Containing pandemic influenza with antiviral agents, Am. J. of Epidemiol., 159 (2004), 623-633.doi: 10.1093/aje/kwh092.

    [33]

    P. Manfredi, P. D. Posta, A. d'Onofrio, E. Salinelli, F. Centrone, C. Meo and P. Poletti, Optimal vaccination choice, vaccination games, and rational exemption: An appraisal, Vaccine, 28 (2009), 98-109.doi: 10.1016/j.vaccine.2009.09.109.

    [34]

    S. M. Tracht, S. Y. Del Valle and J. M. Hyman, Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A (H1N1), PLoS One, 5 (2011), e9018.doi: 10.1371/journal.pone.0009018.

    [35]

    S. Merler, M. Ajelli and C. Rizzo, Age-prioritized use of antivirals during an influenza pandemic, BMC Infect. Dis., 9 (2009), 117.doi: 10.1186/1471-2334-9-117.

    [36]

    A. Mitchell, T. Rosenstiel and L. Christian, What Facebook and Twitter mean for news, Pew Research Center's Project for Excellence in Journalism, (2012). Available from: http://stateofthemedia.org/2012/mobile-devices-and-news-consumption-some-good-signs-for-journalism/what-facebook-and-twitter-mean-for-news/.

    [37]

    L. Odden, Top 10 uses of Twitter, Online Marketing Blog, (2008). Available from: http://www.toprankblog.com/2008/05/top-10-twitter-uses/.

    [38]

    P. Poletti, M. Ajelli and S. Merler, Risk perception and effectiveness of uncoordinated behavioral responses in an emerging epidemic, Math. Biosci., 238 (2012), 80-89.doi: 10.1016/j.mbs.2012.04.003.

    [39]

    P. Poletti, B. Caprile, M. Ajelli, A. Pugliese and S. Merler, Spontaneous behavioural changes in response to epidemics, J. Theoret. Biol., 260 (2009), 31-40.doi: 10.1016/j.jtbi.2009.04.029.

    [40]

    T. C. Reluga, Game theory of social distancing in response to an epidemic, PLoS Comput. Biol., 6 (2010), e1000793.doi: 10.1371/journal.pcbi.1000793.

    [41]

    D. Scanfeld, V. Scanfeld and E. L. Larson, Dissemination of health information through social networks: Twitter and antibiotics, Am. J. Infect. Control, 38 (2010), 182-188.doi: 10.1016/j.ajic.2009.11.004.

    [42]

    A. Signorini, A. M. Segre and P. M. Polgreen, The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic, PLoS One, 6 (2011), e19467.doi: 10.1371/journal.pone.0019467.

    [43]

    A. Smith and J. Brenner, Twitter use 2012, Pew Internet and American Life Project, (2012). Available from: http://www.pewinternet.com/Reports/2012/Twitter-Use-2012.

    [44]

    J. M. Tchuenche, and C. T. Bauch, Dynamics of an infectious disease where media coverage influences transmission, ISRN Biomathematics, 2012 (2012), 1-10.doi: 10.5402/2012/581274.

    [45]

    J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith and C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health, 11 (2011).

    [46]

    V. Tweedle and R. J. Smith, A mathematical model of Bieber Fever: The most infectious disease of our time?, in Understanding the Dynamics of Emerging and Re-Emerging Infectious Diseases Using Mathematical Models (eds. S. Mushayabasa and C. P. Bhunu), 2012, 157-177.

    [47]

    S. J. Sullivan, A. G. Schneiders, C. W. Cheang, E. Kitto, H. Lee, J. Redhead, S. Ward, O. H. Ahmed and P. R. McCrory, 'What's happening?' A content analysis of concussion-related traffic on Twitter, Brit. J. Sports Med., 46 (2012), 258-263.doi: 10.1136/bjsm.2010.080341.

    [48]

    M. Szomszor, P. Kostkova and E. de Quincey, Swineflu: Twitter predicts Swine Flu outbreak in 2009, in Electronic Healthcare, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 69, Springer Berlin Heidelberg, 2010, 18-26.doi: 10.1007/978-3-642-23635-8_3.

    [49]

    UK Health Protection Agency (HPA)https://www.hpa.org.uk/, 2010.

    [50]

    P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6.

    [51]

    J. van Dijck, Tracing Twitter: The rise of a microblogging platform, Int. J. of Media Cultural Polit., 7 (2012), 333-348.doi: 10.1386/macp.7.3.333_1.

    [52]

    K. Vance, W. Howe and R. P. Dellavalle, Social Internet sites as a source of public health information, Dermatol. Clin., 27 (2009), 133-136.doi: 10.1016/j.det.2008.11.010.

    [53]

    M. Wazny, Using viral marketing in campaigns supporting health promotion, Proceedings of the 13th World Congress on Public Health, (2012).

    [54]

    J. T. Wu, S. Riley, C. Fraser and G. M. Leung, Reducing the impact of the next influenza pandemic using household-based public health interventions, PLoS Med., 3 (2006), e361.doi: 10.1371/journal.pmed.0030361.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(202) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return