2014, 11(6): 1357-1373. doi: 10.3934/mbe.2014.11.1357

A model for the nonlinear mechanism responsible for cochlear amplification

1. 

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, United States, United States

Received  September 2013 Revised  July 2014 Published  September 2014

A nonlinear model for the mechanism responsible for the amplification of the sound wave in the ear is derived using the geometric and material properties of the system. The result is a nonlinear beam equation, with the nonlinearity appearing in a coefficient of the equation. Once derived, the beam problem is analyzed for various loading conditions. Based on this analysis it is seen that the mechanism is capable of producing a spatially localized gain, as required by any amplification mechanism, but it is also capable of increasing the spatial contrast in the signal.
Citation: Kimberly Fessel, Mark H. Holmes. A model for the nonlinear mechanism responsible for cochlear amplification. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1357-1373. doi: 10.3934/mbe.2014.11.1357
References:
[1]

J. Ashmore, Cochlear outer hair cell motility,, Physiol. Rev., 88 (2008), 173.  doi: 10.1152/physrev.00044.2006.  Google Scholar

[2]

J. Ashmore, P. Avan, W. E. Brownell, P. Dallos, K. Dierkes, R. Fettiplace, K. Grosh, C. M. Hackney, A. J. Hudspeth, F. Jülicher, B. Lindner, P. Martin, J. Meaud, C. Petit, J. R. Santos Sacchi and B. Canlon, The remarkable cochlear amplifier,, Hearing Res., 266 (2010), 1.  doi: 10.1016/j.heares.2010.05.001.  Google Scholar

[3]

J. F. Ashmore, A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier,, J. Physiol., 388 (1987), 323.   Google Scholar

[4]

I. A. Belyantseva, H. J. Adler, R. Curi, G. I. Frolenkov and B. Kachar, Expression and localization of prestin and the sugar transporter glut-5 during development of electromotility in cochlear outer hair cells,, J. Neurosci., 20 (2000).   Google Scholar

[5]

R. S. Chadwick, Studies in cochlear mechanics,, in Mathematical Modeling of the Hearing Process (eds. M. H. Holmes and L. A. Rubenfeld), (1981), 369.  doi: 10.1007/978-3-642-46445-4_2.  Google Scholar

[6]

R. S. Chadwick, Compression, gain, and nonlinear distortion in an active cochlear model with subpartitions,, Proc. Nat. Acad. Sci., 95 (1998), 14594.  doi: 10.1073/pnas.95.25.14594.  Google Scholar

[7]

P. Dallos and B. Fakler, Prestin, a new type of motor protein,, Nature Reviews Molecular Cell Biology, 3 (2002), 104.  doi: 10.1038/nrm730.  Google Scholar

[8]

D. Y. Gao, Nonlinear elastic beam theory with application in contact problems and variational approaches,, Mech. Res. Commun., 23 (1996), 11.  doi: 10.1016/0093-6413(95)00071-2.  Google Scholar

[9]

R. Glueckert, K. Pfaller, A. Kinnefors, A. Schrott-Fischer and H. Rask-Andersen, High resolution scanning electron microscopy of the human organ of Corti: A study using freshly fixed surgical specimens,, Hearing Res., 199 (2005), 40.  doi: 10.1016/S0378-5955(04)00184-4.  Google Scholar

[10]

M. H. Holmes, Frequency discrimination in the mammalian cochlea: Theory vs. experiment,, J. Acoust. Soc. Amer., 81 (1987), 103.   Google Scholar

[11]

M. H. Holmes and J. D. Cole, Cochlear mechanics: Analysis for a pure tone,, J. Acoust. Soc. Amer., 76 (1984), 767.  doi: 10.1121/1.391300.  Google Scholar

[12]

A. J. Hudspeth and D. P. Corey, Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli,, Proc. Nat. Acad. Sci., 74 (1977), 2407.  doi: 10.1073/pnas.74.6.2407.  Google Scholar

[13]

Z. Liao, S. Feng, A. S. Popel, W. E. Brownell and A. A. Spector, Outer hair cell active force generation in the cochlear environment,, J. Acoust. Soc. Amer., 122 (2007), 2215.  doi: 10.1121/1.2776154.  Google Scholar

[14]

M. C. Liberman, J. Gao, D. Z. He, X. Wu, S. Jia and J. Zuo, Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier,, Nature, 419 (2002), 300.  doi: 10.1038/nature01059.  Google Scholar

[15]

J. Lighthill, Energy flow in the cochlea,, J. Fluid Mechanics, 106 (1981), 149.  doi: 10.1017/S0022112081001560.  Google Scholar

[16]

K. M. Lim and C. R. Steele, A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method,, Hearing Res., 170 (2002), 190.  doi: 10.1016/S0378-5955(02)00491-4.  Google Scholar

[17]

J. Meaud and K. Grosh, Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea,, Biophysical Journal, 102 (1996), 1237.  doi: 10.1016/j.bpj.2012.02.026.  Google Scholar

[18]

K. E. Nilsen and I. J. Russell, The spatial and temporal representation of a tone on the guinea pig basilar membrane,, Proc. Natl. Acad. Sci., 97 (2006), 11751.  doi: 10.1073/pnas.97.22.11751.  Google Scholar

[19]

J. O. Pickles, An Introduction to the Physiology of Hearing,, Emerald Group, (2008).   Google Scholar

[20]

S. Ramamoorthy, N. V. Deo and K. Grosh, A mechano-electro-acoustical model for the cochlea: Response to acoustic stimuli,, JASA, 121 (2007), 2758.  doi: 10.1121/1.2713725.  Google Scholar

[21]

I. J. Russell, A. R. Cody and G. P. Richarson, The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro,, Hearing Res., 22 (1986), 199.  doi: 10.1016/0378-5955(86)90096-1.  Google Scholar

[22]

I. J. Russell and K. E. Nilsen, The location of the cochlear amplifier: Spatial representation of a single tone on the guinea pig basilar membrane,, Proc. Nat. Acad. Sci., 94 (1997), 2660.  doi: 10.1073/pnas.94.6.2660.  Google Scholar

[23]

C. R. Steele and L. A. Taber, Comparison of WKB calculations and experimental results for three-dimensional cochlear models,, J. Acoust. Soc. Amer., 65 (1979), 1007.  doi: 10.1121/1.382570.  Google Scholar

[24]

I. U. Teudt and C.-P. Richter, The hemicochlea preparation of the guinea pig and other mammalian cochleae,, J. Neurosci. Methods, 162 (2007), 187.  doi: 10.1016/j.jneumeth.2007.01.012.  Google Scholar

[25]

J. A. Tolomeo and M. C. Holley, Mechanics of microtubule bundles in pillar cells from the inner ear,, Biophys. J., 73 (1997), 2241.  doi: 10.1016/S0006-3495(97)78255-9.  Google Scholar

[26]

Y. Yoon, S. Puria and C. R. Steele, Frequency and spatial response of basilar membrane vibration in a three-dimensional gerbil cochlear model,, J. Mech. Mater. Struct., 2 (2007), 1449.  doi: 10.2140/jomms.2007.2.1449.  Google Scholar

show all references

References:
[1]

J. Ashmore, Cochlear outer hair cell motility,, Physiol. Rev., 88 (2008), 173.  doi: 10.1152/physrev.00044.2006.  Google Scholar

[2]

J. Ashmore, P. Avan, W. E. Brownell, P. Dallos, K. Dierkes, R. Fettiplace, K. Grosh, C. M. Hackney, A. J. Hudspeth, F. Jülicher, B. Lindner, P. Martin, J. Meaud, C. Petit, J. R. Santos Sacchi and B. Canlon, The remarkable cochlear amplifier,, Hearing Res., 266 (2010), 1.  doi: 10.1016/j.heares.2010.05.001.  Google Scholar

[3]

J. F. Ashmore, A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier,, J. Physiol., 388 (1987), 323.   Google Scholar

[4]

I. A. Belyantseva, H. J. Adler, R. Curi, G. I. Frolenkov and B. Kachar, Expression and localization of prestin and the sugar transporter glut-5 during development of electromotility in cochlear outer hair cells,, J. Neurosci., 20 (2000).   Google Scholar

[5]

R. S. Chadwick, Studies in cochlear mechanics,, in Mathematical Modeling of the Hearing Process (eds. M. H. Holmes and L. A. Rubenfeld), (1981), 369.  doi: 10.1007/978-3-642-46445-4_2.  Google Scholar

[6]

R. S. Chadwick, Compression, gain, and nonlinear distortion in an active cochlear model with subpartitions,, Proc. Nat. Acad. Sci., 95 (1998), 14594.  doi: 10.1073/pnas.95.25.14594.  Google Scholar

[7]

P. Dallos and B. Fakler, Prestin, a new type of motor protein,, Nature Reviews Molecular Cell Biology, 3 (2002), 104.  doi: 10.1038/nrm730.  Google Scholar

[8]

D. Y. Gao, Nonlinear elastic beam theory with application in contact problems and variational approaches,, Mech. Res. Commun., 23 (1996), 11.  doi: 10.1016/0093-6413(95)00071-2.  Google Scholar

[9]

R. Glueckert, K. Pfaller, A. Kinnefors, A. Schrott-Fischer and H. Rask-Andersen, High resolution scanning electron microscopy of the human organ of Corti: A study using freshly fixed surgical specimens,, Hearing Res., 199 (2005), 40.  doi: 10.1016/S0378-5955(04)00184-4.  Google Scholar

[10]

M. H. Holmes, Frequency discrimination in the mammalian cochlea: Theory vs. experiment,, J. Acoust. Soc. Amer., 81 (1987), 103.   Google Scholar

[11]

M. H. Holmes and J. D. Cole, Cochlear mechanics: Analysis for a pure tone,, J. Acoust. Soc. Amer., 76 (1984), 767.  doi: 10.1121/1.391300.  Google Scholar

[12]

A. J. Hudspeth and D. P. Corey, Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli,, Proc. Nat. Acad. Sci., 74 (1977), 2407.  doi: 10.1073/pnas.74.6.2407.  Google Scholar

[13]

Z. Liao, S. Feng, A. S. Popel, W. E. Brownell and A. A. Spector, Outer hair cell active force generation in the cochlear environment,, J. Acoust. Soc. Amer., 122 (2007), 2215.  doi: 10.1121/1.2776154.  Google Scholar

[14]

M. C. Liberman, J. Gao, D. Z. He, X. Wu, S. Jia and J. Zuo, Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier,, Nature, 419 (2002), 300.  doi: 10.1038/nature01059.  Google Scholar

[15]

J. Lighthill, Energy flow in the cochlea,, J. Fluid Mechanics, 106 (1981), 149.  doi: 10.1017/S0022112081001560.  Google Scholar

[16]

K. M. Lim and C. R. Steele, A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method,, Hearing Res., 170 (2002), 190.  doi: 10.1016/S0378-5955(02)00491-4.  Google Scholar

[17]

J. Meaud and K. Grosh, Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea,, Biophysical Journal, 102 (1996), 1237.  doi: 10.1016/j.bpj.2012.02.026.  Google Scholar

[18]

K. E. Nilsen and I. J. Russell, The spatial and temporal representation of a tone on the guinea pig basilar membrane,, Proc. Natl. Acad. Sci., 97 (2006), 11751.  doi: 10.1073/pnas.97.22.11751.  Google Scholar

[19]

J. O. Pickles, An Introduction to the Physiology of Hearing,, Emerald Group, (2008).   Google Scholar

[20]

S. Ramamoorthy, N. V. Deo and K. Grosh, A mechano-electro-acoustical model for the cochlea: Response to acoustic stimuli,, JASA, 121 (2007), 2758.  doi: 10.1121/1.2713725.  Google Scholar

[21]

I. J. Russell, A. R. Cody and G. P. Richarson, The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro,, Hearing Res., 22 (1986), 199.  doi: 10.1016/0378-5955(86)90096-1.  Google Scholar

[22]

I. J. Russell and K. E. Nilsen, The location of the cochlear amplifier: Spatial representation of a single tone on the guinea pig basilar membrane,, Proc. Nat. Acad. Sci., 94 (1997), 2660.  doi: 10.1073/pnas.94.6.2660.  Google Scholar

[23]

C. R. Steele and L. A. Taber, Comparison of WKB calculations and experimental results for three-dimensional cochlear models,, J. Acoust. Soc. Amer., 65 (1979), 1007.  doi: 10.1121/1.382570.  Google Scholar

[24]

I. U. Teudt and C.-P. Richter, The hemicochlea preparation of the guinea pig and other mammalian cochleae,, J. Neurosci. Methods, 162 (2007), 187.  doi: 10.1016/j.jneumeth.2007.01.012.  Google Scholar

[25]

J. A. Tolomeo and M. C. Holley, Mechanics of microtubule bundles in pillar cells from the inner ear,, Biophys. J., 73 (1997), 2241.  doi: 10.1016/S0006-3495(97)78255-9.  Google Scholar

[26]

Y. Yoon, S. Puria and C. R. Steele, Frequency and spatial response of basilar membrane vibration in a three-dimensional gerbil cochlear model,, J. Mech. Mater. Struct., 2 (2007), 1449.  doi: 10.2140/jomms.2007.2.1449.  Google Scholar

[1]

Xilin Fu, Zhang Chen. New discrete analogue of neural networks with nonlinear amplification function and its periodic dynamic analysis. Conference Publications, 2007, 2007 (Special) : 391-398. doi: 10.3934/proc.2007.2007.391

[2]

Pao-Liu Chow. Asymptotic solutions of a nonlinear stochastic beam equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 735-749. doi: 10.3934/dcdsb.2006.6.735

[3]

K. T. Andrews, M. F. M'Bengue, Meir Shillor. Vibrations of a nonlinear dynamic beam between two stops. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 23-38. doi: 10.3934/dcdsb.2009.12.23

[4]

Maja Miletić, Dominik Stürzer, Anton Arnold. An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3029-3055. doi: 10.3934/dcdsb.2015.20.3029

[5]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1447-1462. doi: 10.3934/cpaa.2011.10.1447

[6]

Arnaud Münch, Ademir Fernando Pazoto. Boundary stabilization of a nonlinear shallow beam: theory and numerical approximation. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 197-219. doi: 10.3934/dcdsb.2008.10.197

[7]

Yanan Li, Zhijian Yang, Fang Da. Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5975-6000. doi: 10.3934/dcds.2019261

[8]

Louis Tebou. Simultaneous stabilization of a system of interacting plate and membrane. Evolution Equations & Control Theory, 2013, 2 (1) : 153-172. doi: 10.3934/eect.2013.2.153

[9]

Giovanni Alessandrini, Elio Cabib. Determining the anisotropic traction state in a membrane by boundary measurements. Inverse Problems & Imaging, 2007, 1 (3) : 437-442. doi: 10.3934/ipi.2007.1.437

[10]

Francisco J. Diaz-Otero, Pedro Chamorro-Posada. Interaction length of DM solitons in the presence of third order dispersion with loss and amplification. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1069-1078. doi: 10.3934/dcdss.2011.4.1069

[11]

Markus Gahn, Maria Neuss-Radu, Peter Knabner. Derivation of effective transmission conditions for domains separated by a membrane for different scaling of membrane diffusivity. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 773-797. doi: 10.3934/dcdss.2017039

[12]

Joyce R. McLaughlin and Arturo Portnoy. Perturbation expansions for eigenvalues and eigenvectors for a rectangular membrane subject to a restorative force. Electronic Research Announcements, 1997, 3: 72-77.

[13]

Giovanni Cupini, Eugenio Vecchi. Faber-Krahn and Lieb-type inequalities for the composite membrane problem. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2679-2691. doi: 10.3934/cpaa.2019119

[14]

Yanfang Li, Zhuangyi Liu, Yang Wang. Weak stability of a laminated beam. Mathematical Control & Related Fields, 2018, 8 (3&4) : 789-808. doi: 10.3934/mcrf.2018035

[15]

M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337

[16]

Quanyi Liang, Kairong Liu, Gang Meng, Zhikun She. Minimization of the lowest eigenvalue for a vibrating beam. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2079-2092. doi: 10.3934/dcds.2018085

[17]

Qiang Du, Chun Liu, R. Ryham, X. Wang. Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation. Communications on Pure & Applied Analysis, 2005, 4 (3) : 537-548. doi: 10.3934/cpaa.2005.4.537

[18]

Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75-101. doi: 10.3934/mbe.2013.10.75

[19]

Jinzhi Lei, Dongyong Wang, You Song, Qing Nie, Frederic Y. M. Wan. Robustness of Morphogen gradients with "bucket brigade" transport through membrane-associated non-receptors. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 721-739. doi: 10.3934/dcdsb.2013.18.721

[20]

Scott W. Hansen, Andrei A. Lyashenko. Exact controllability of a beam in an incompressible inviscid fluid. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 59-78. doi: 10.3934/dcds.1997.3.59

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]