Advanced Search
Article Contents
Article Contents

A model for the nonlinear mechanism responsible for cochlear amplification

Abstract Related Papers Cited by
  • A nonlinear model for the mechanism responsible for the amplification of the sound wave in the ear is derived using the geometric and material properties of the system. The result is a nonlinear beam equation, with the nonlinearity appearing in a coefficient of the equation. Once derived, the beam problem is analyzed for various loading conditions. Based on this analysis it is seen that the mechanism is capable of producing a spatially localized gain, as required by any amplification mechanism, but it is also capable of increasing the spatial contrast in the signal.
    Mathematics Subject Classification: Primary: 92C10, 74H10; Secondary: 35C20.


    \begin{equation} \\ \end{equation}
  • [1]

    J. Ashmore, Cochlear outer hair cell motility, Physiol. Rev., 88 (2008), 173-210.doi: 10.1152/physrev.00044.2006.


    J. Ashmore, P. Avan, W. E. Brownell, P. Dallos, K. Dierkes, R. Fettiplace, K. Grosh, C. M. Hackney, A. J. Hudspeth, F. Jülicher, B. Lindner, P. Martin, J. Meaud, C. Petit, J. R. Santos Sacchi and B. Canlon, The remarkable cochlear amplifier, Hearing Res., 266 (2010), 1-17.doi: 10.1016/j.heares.2010.05.001.


    J. F. Ashmore, A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier, J. Physiol., 388 (1987), 323-347.


    I. A. Belyantseva, H. J. Adler, R. Curi, G. I. Frolenkov and B. Kachar, Expression and localization of prestin and the sugar transporter glut-5 during development of electromotility in cochlear outer hair cells, J. Neurosci., 20 (2000), RC116.


    R. S. Chadwick, Studies in cochlear mechanics, in Mathematical Modeling of the Hearing Process (eds. M. H. Holmes and L. A. Rubenfeld), Lecture Notes in Biomathematics, Springer-Verlag, New York, 1981, 369-386.doi: 10.1007/978-3-642-46445-4_2.


    R. S. Chadwick, Compression, gain, and nonlinear distortion in an active cochlear model with subpartitions, Proc. Nat. Acad. Sci., 95 (1998), 14594-14599.doi: 10.1073/pnas.95.25.14594.


    P. Dallos and B. Fakler, Prestin, a new type of motor protein, Nature Reviews Molecular Cell Biology, 3 (2002), 104-111.doi: 10.1038/nrm730.


    D. Y. Gao, Nonlinear elastic beam theory with application in contact problems and variational approaches, Mech. Res. Commun., 23 (1996), 11-17.doi: 10.1016/0093-6413(95)00071-2.


    R. Glueckert, K. Pfaller, A. Kinnefors, A. Schrott-Fischer and H. Rask-Andersen, High resolution scanning electron microscopy of the human organ of Corti: A study using freshly fixed surgical specimens, Hearing Res., 199 (2005), 40-56.doi: 10.1016/S0378-5955(04)00184-4.


    M. H. Holmes, Frequency discrimination in the mammalian cochlea: Theory vs. experiment, J. Acoust. Soc. Amer., 81 (1987), 103-114.


    M. H. Holmes and J. D. Cole, Cochlear mechanics: Analysis for a pure tone, J. Acoust. Soc. Amer., 76 (1984), 767-778.doi: 10.1121/1.391300.


    A. J. Hudspeth and D. P. Corey, Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli, Proc. Nat. Acad. Sci., 74 (1977), 2407-2411.doi: 10.1073/pnas.74.6.2407.


    Z. Liao, S. Feng, A. S. Popel, W. E. Brownell and A. A. Spector, Outer hair cell active force generation in the cochlear environment, J. Acoust. Soc. Amer., 122 (2007), 2215-2225.doi: 10.1121/1.2776154.


    M. C. Liberman, J. Gao, D. Z. He, X. Wu, S. Jia and J. Zuo, Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier, Nature, 419 (2002), 300-304.doi: 10.1038/nature01059.


    J. Lighthill, Energy flow in the cochlea, J. Fluid Mechanics, 106 (1981), 149-213.doi: 10.1017/S0022112081001560.


    K. M. Lim and C. R. Steele, A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method, Hearing Res., 170 (2002), 190-205.doi: 10.1016/S0378-5955(02)00491-4.


    J. Meaud and K. Grosh, Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea, Biophysical Journal, 102 (1996), 1237-1246.doi: 10.1016/j.bpj.2012.02.026.


    K. E. Nilsen and I. J. Russell, The spatial and temporal representation of a tone on the guinea pig basilar membrane, Proc. Natl. Acad. Sci., 97 (2006), 11751-11758.doi: 10.1073/pnas.97.22.11751.


    J. O. Pickles, An Introduction to the Physiology of Hearing, Emerald Group, Bingley, UK, 2008.


    S. Ramamoorthy, N. V. Deo and K. Grosh, A mechano-electro-acoustical model for the cochlea: Response to acoustic stimuli, JASA, 121 (2007), 2758-2773.doi: 10.1121/1.2713725.


    I. J. Russell, A. R. Cody and G. P. Richarson, The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro, Hearing Res., 22 (1986), 199-216.doi: 10.1016/0378-5955(86)90096-1.


    I. J. Russell and K. E. Nilsen, The location of the cochlear amplifier: Spatial representation of a single tone on the guinea pig basilar membrane, Proc. Nat. Acad. Sci., 94 (1997), 2660-2664.doi: 10.1073/pnas.94.6.2660.


    C. R. Steele and L. A. Taber, Comparison of WKB calculations and experimental results for three-dimensional cochlear models, J. Acoust. Soc. Amer., 65 (1979), 1007-1018.doi: 10.1121/1.382570.


    I. U. Teudt and C.-P. Richter, The hemicochlea preparation of the guinea pig and other mammalian cochleae, J. Neurosci. Methods, 162 (2007), 187-197.doi: 10.1016/j.jneumeth.2007.01.012.


    J. A. Tolomeo and M. C. Holley, Mechanics of microtubule bundles in pillar cells from the inner ear, Biophys. J., 73 (1997), 2241-2247.doi: 10.1016/S0006-3495(97)78255-9.


    Y. Yoon, S. Puria and C. R. Steele, Frequency and spatial response of basilar membrane vibration in a three-dimensional gerbil cochlear model, J. Mech. Mater. Struct., 2 (2007), 1449-1458.doi: 10.2140/jomms.2007.2.1449.

  • 加载中

Article Metrics

HTML views() PDF downloads(37) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint