2014, 11(6): 1357-1373. doi: 10.3934/mbe.2014.11.1357

A model for the nonlinear mechanism responsible for cochlear amplification

1. 

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, United States, United States

Received  September 2013 Revised  July 2014 Published  September 2014

A nonlinear model for the mechanism responsible for the amplification of the sound wave in the ear is derived using the geometric and material properties of the system. The result is a nonlinear beam equation, with the nonlinearity appearing in a coefficient of the equation. Once derived, the beam problem is analyzed for various loading conditions. Based on this analysis it is seen that the mechanism is capable of producing a spatially localized gain, as required by any amplification mechanism, but it is also capable of increasing the spatial contrast in the signal.
Citation: Kimberly Fessel, Mark H. Holmes. A model for the nonlinear mechanism responsible for cochlear amplification. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1357-1373. doi: 10.3934/mbe.2014.11.1357
References:
[1]

J. Ashmore, Cochlear outer hair cell motility,, Physiol. Rev., 88 (2008), 173.  doi: 10.1152/physrev.00044.2006.  Google Scholar

[2]

J. Ashmore, P. Avan, W. E. Brownell, P. Dallos, K. Dierkes, R. Fettiplace, K. Grosh, C. M. Hackney, A. J. Hudspeth, F. Jülicher, B. Lindner, P. Martin, J. Meaud, C. Petit, J. R. Santos Sacchi and B. Canlon, The remarkable cochlear amplifier,, Hearing Res., 266 (2010), 1.  doi: 10.1016/j.heares.2010.05.001.  Google Scholar

[3]

J. F. Ashmore, A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier,, J. Physiol., 388 (1987), 323.   Google Scholar

[4]

I. A. Belyantseva, H. J. Adler, R. Curi, G. I. Frolenkov and B. Kachar, Expression and localization of prestin and the sugar transporter glut-5 during development of electromotility in cochlear outer hair cells,, J. Neurosci., 20 (2000).   Google Scholar

[5]

R. S. Chadwick, Studies in cochlear mechanics,, in Mathematical Modeling of the Hearing Process (eds. M. H. Holmes and L. A. Rubenfeld), (1981), 369.  doi: 10.1007/978-3-642-46445-4_2.  Google Scholar

[6]

R. S. Chadwick, Compression, gain, and nonlinear distortion in an active cochlear model with subpartitions,, Proc. Nat. Acad. Sci., 95 (1998), 14594.  doi: 10.1073/pnas.95.25.14594.  Google Scholar

[7]

P. Dallos and B. Fakler, Prestin, a new type of motor protein,, Nature Reviews Molecular Cell Biology, 3 (2002), 104.  doi: 10.1038/nrm730.  Google Scholar

[8]

D. Y. Gao, Nonlinear elastic beam theory with application in contact problems and variational approaches,, Mech. Res. Commun., 23 (1996), 11.  doi: 10.1016/0093-6413(95)00071-2.  Google Scholar

[9]

R. Glueckert, K. Pfaller, A. Kinnefors, A. Schrott-Fischer and H. Rask-Andersen, High resolution scanning electron microscopy of the human organ of Corti: A study using freshly fixed surgical specimens,, Hearing Res., 199 (2005), 40.  doi: 10.1016/S0378-5955(04)00184-4.  Google Scholar

[10]

M. H. Holmes, Frequency discrimination in the mammalian cochlea: Theory vs. experiment,, J. Acoust. Soc. Amer., 81 (1987), 103.   Google Scholar

[11]

M. H. Holmes and J. D. Cole, Cochlear mechanics: Analysis for a pure tone,, J. Acoust. Soc. Amer., 76 (1984), 767.  doi: 10.1121/1.391300.  Google Scholar

[12]

A. J. Hudspeth and D. P. Corey, Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli,, Proc. Nat. Acad. Sci., 74 (1977), 2407.  doi: 10.1073/pnas.74.6.2407.  Google Scholar

[13]

Z. Liao, S. Feng, A. S. Popel, W. E. Brownell and A. A. Spector, Outer hair cell active force generation in the cochlear environment,, J. Acoust. Soc. Amer., 122 (2007), 2215.  doi: 10.1121/1.2776154.  Google Scholar

[14]

M. C. Liberman, J. Gao, D. Z. He, X. Wu, S. Jia and J. Zuo, Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier,, Nature, 419 (2002), 300.  doi: 10.1038/nature01059.  Google Scholar

[15]

J. Lighthill, Energy flow in the cochlea,, J. Fluid Mechanics, 106 (1981), 149.  doi: 10.1017/S0022112081001560.  Google Scholar

[16]

K. M. Lim and C. R. Steele, A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method,, Hearing Res., 170 (2002), 190.  doi: 10.1016/S0378-5955(02)00491-4.  Google Scholar

[17]

J. Meaud and K. Grosh, Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea,, Biophysical Journal, 102 (1996), 1237.  doi: 10.1016/j.bpj.2012.02.026.  Google Scholar

[18]

K. E. Nilsen and I. J. Russell, The spatial and temporal representation of a tone on the guinea pig basilar membrane,, Proc. Natl. Acad. Sci., 97 (2006), 11751.  doi: 10.1073/pnas.97.22.11751.  Google Scholar

[19]

J. O. Pickles, An Introduction to the Physiology of Hearing,, Emerald Group, (2008).   Google Scholar

[20]

S. Ramamoorthy, N. V. Deo and K. Grosh, A mechano-electro-acoustical model for the cochlea: Response to acoustic stimuli,, JASA, 121 (2007), 2758.  doi: 10.1121/1.2713725.  Google Scholar

[21]

I. J. Russell, A. R. Cody and G. P. Richarson, The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro,, Hearing Res., 22 (1986), 199.  doi: 10.1016/0378-5955(86)90096-1.  Google Scholar

[22]

I. J. Russell and K. E. Nilsen, The location of the cochlear amplifier: Spatial representation of a single tone on the guinea pig basilar membrane,, Proc. Nat. Acad. Sci., 94 (1997), 2660.  doi: 10.1073/pnas.94.6.2660.  Google Scholar

[23]

C. R. Steele and L. A. Taber, Comparison of WKB calculations and experimental results for three-dimensional cochlear models,, J. Acoust. Soc. Amer., 65 (1979), 1007.  doi: 10.1121/1.382570.  Google Scholar

[24]

I. U. Teudt and C.-P. Richter, The hemicochlea preparation of the guinea pig and other mammalian cochleae,, J. Neurosci. Methods, 162 (2007), 187.  doi: 10.1016/j.jneumeth.2007.01.012.  Google Scholar

[25]

J. A. Tolomeo and M. C. Holley, Mechanics of microtubule bundles in pillar cells from the inner ear,, Biophys. J., 73 (1997), 2241.  doi: 10.1016/S0006-3495(97)78255-9.  Google Scholar

[26]

Y. Yoon, S. Puria and C. R. Steele, Frequency and spatial response of basilar membrane vibration in a three-dimensional gerbil cochlear model,, J. Mech. Mater. Struct., 2 (2007), 1449.  doi: 10.2140/jomms.2007.2.1449.  Google Scholar

show all references

References:
[1]

J. Ashmore, Cochlear outer hair cell motility,, Physiol. Rev., 88 (2008), 173.  doi: 10.1152/physrev.00044.2006.  Google Scholar

[2]

J. Ashmore, P. Avan, W. E. Brownell, P. Dallos, K. Dierkes, R. Fettiplace, K. Grosh, C. M. Hackney, A. J. Hudspeth, F. Jülicher, B. Lindner, P. Martin, J. Meaud, C. Petit, J. R. Santos Sacchi and B. Canlon, The remarkable cochlear amplifier,, Hearing Res., 266 (2010), 1.  doi: 10.1016/j.heares.2010.05.001.  Google Scholar

[3]

J. F. Ashmore, A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier,, J. Physiol., 388 (1987), 323.   Google Scholar

[4]

I. A. Belyantseva, H. J. Adler, R. Curi, G. I. Frolenkov and B. Kachar, Expression and localization of prestin and the sugar transporter glut-5 during development of electromotility in cochlear outer hair cells,, J. Neurosci., 20 (2000).   Google Scholar

[5]

R. S. Chadwick, Studies in cochlear mechanics,, in Mathematical Modeling of the Hearing Process (eds. M. H. Holmes and L. A. Rubenfeld), (1981), 369.  doi: 10.1007/978-3-642-46445-4_2.  Google Scholar

[6]

R. S. Chadwick, Compression, gain, and nonlinear distortion in an active cochlear model with subpartitions,, Proc. Nat. Acad. Sci., 95 (1998), 14594.  doi: 10.1073/pnas.95.25.14594.  Google Scholar

[7]

P. Dallos and B. Fakler, Prestin, a new type of motor protein,, Nature Reviews Molecular Cell Biology, 3 (2002), 104.  doi: 10.1038/nrm730.  Google Scholar

[8]

D. Y. Gao, Nonlinear elastic beam theory with application in contact problems and variational approaches,, Mech. Res. Commun., 23 (1996), 11.  doi: 10.1016/0093-6413(95)00071-2.  Google Scholar

[9]

R. Glueckert, K. Pfaller, A. Kinnefors, A. Schrott-Fischer and H. Rask-Andersen, High resolution scanning electron microscopy of the human organ of Corti: A study using freshly fixed surgical specimens,, Hearing Res., 199 (2005), 40.  doi: 10.1016/S0378-5955(04)00184-4.  Google Scholar

[10]

M. H. Holmes, Frequency discrimination in the mammalian cochlea: Theory vs. experiment,, J. Acoust. Soc. Amer., 81 (1987), 103.   Google Scholar

[11]

M. H. Holmes and J. D. Cole, Cochlear mechanics: Analysis for a pure tone,, J. Acoust. Soc. Amer., 76 (1984), 767.  doi: 10.1121/1.391300.  Google Scholar

[12]

A. J. Hudspeth and D. P. Corey, Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli,, Proc. Nat. Acad. Sci., 74 (1977), 2407.  doi: 10.1073/pnas.74.6.2407.  Google Scholar

[13]

Z. Liao, S. Feng, A. S. Popel, W. E. Brownell and A. A. Spector, Outer hair cell active force generation in the cochlear environment,, J. Acoust. Soc. Amer., 122 (2007), 2215.  doi: 10.1121/1.2776154.  Google Scholar

[14]

M. C. Liberman, J. Gao, D. Z. He, X. Wu, S. Jia and J. Zuo, Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier,, Nature, 419 (2002), 300.  doi: 10.1038/nature01059.  Google Scholar

[15]

J. Lighthill, Energy flow in the cochlea,, J. Fluid Mechanics, 106 (1981), 149.  doi: 10.1017/S0022112081001560.  Google Scholar

[16]

K. M. Lim and C. R. Steele, A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method,, Hearing Res., 170 (2002), 190.  doi: 10.1016/S0378-5955(02)00491-4.  Google Scholar

[17]

J. Meaud and K. Grosh, Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea,, Biophysical Journal, 102 (1996), 1237.  doi: 10.1016/j.bpj.2012.02.026.  Google Scholar

[18]

K. E. Nilsen and I. J. Russell, The spatial and temporal representation of a tone on the guinea pig basilar membrane,, Proc. Natl. Acad. Sci., 97 (2006), 11751.  doi: 10.1073/pnas.97.22.11751.  Google Scholar

[19]

J. O. Pickles, An Introduction to the Physiology of Hearing,, Emerald Group, (2008).   Google Scholar

[20]

S. Ramamoorthy, N. V. Deo and K. Grosh, A mechano-electro-acoustical model for the cochlea: Response to acoustic stimuli,, JASA, 121 (2007), 2758.  doi: 10.1121/1.2713725.  Google Scholar

[21]

I. J. Russell, A. R. Cody and G. P. Richarson, The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro,, Hearing Res., 22 (1986), 199.  doi: 10.1016/0378-5955(86)90096-1.  Google Scholar

[22]

I. J. Russell and K. E. Nilsen, The location of the cochlear amplifier: Spatial representation of a single tone on the guinea pig basilar membrane,, Proc. Nat. Acad. Sci., 94 (1997), 2660.  doi: 10.1073/pnas.94.6.2660.  Google Scholar

[23]

C. R. Steele and L. A. Taber, Comparison of WKB calculations and experimental results for three-dimensional cochlear models,, J. Acoust. Soc. Amer., 65 (1979), 1007.  doi: 10.1121/1.382570.  Google Scholar

[24]

I. U. Teudt and C.-P. Richter, The hemicochlea preparation of the guinea pig and other mammalian cochleae,, J. Neurosci. Methods, 162 (2007), 187.  doi: 10.1016/j.jneumeth.2007.01.012.  Google Scholar

[25]

J. A. Tolomeo and M. C. Holley, Mechanics of microtubule bundles in pillar cells from the inner ear,, Biophys. J., 73 (1997), 2241.  doi: 10.1016/S0006-3495(97)78255-9.  Google Scholar

[26]

Y. Yoon, S. Puria and C. R. Steele, Frequency and spatial response of basilar membrane vibration in a three-dimensional gerbil cochlear model,, J. Mech. Mater. Struct., 2 (2007), 1449.  doi: 10.2140/jomms.2007.2.1449.  Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[3]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[6]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[10]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[14]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[15]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[18]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[19]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[20]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]