2014, 11(6): 1375-1393. doi: 10.3934/mbe.2014.11.1375

Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures

1. 

Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501

2. 

Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555

3. 

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro-ku, Tokyo 153-8914

Received  July 2013 Revised  May 2014 Published  September 2014

In this paper, we formulate an SIR epidemic model with hybrid of multigroup and patch structures, which can be regarded as a model for the geographical spread of infectious diseases or a multi-group model with perturbation. We show that if a threshold value, which corresponds to the well-known basic reproduction number $R_0$, is less than or equal to unity, then the disease-free equilibrium of the model is globally asymptotically stable. We also show that if the threshold value is greater than unity, then the model is uniformly persistent and has an endemic equilibrium. Moreover, using a Lyapunov functional technique, we obtain a sufficient condition under which the endemic equilibrium is globally asymptotically stable. The sufficient condition is satisfied if the transmission coefficients in the same groups are large or the per capita recovery rates are small.
Citation: Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1375-1393. doi: 10.3934/mbe.2014.11.1375
References:
[1]

R. M. Anderson and R. M. May, Infectious Diseases of Humans,, Oxford University, (1991).   Google Scholar

[2]

J. Arino, Diseases in metapopulations,, in Modeling and Dynamics of Infectious Diseases (eds. Z. Ma, (2009), 65.  doi: 10.1142/7223.  Google Scholar

[3]

M. S. Bartlet, Deterministic and stochastic models for recurrent epidemics,, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, (1956), 81.   Google Scholar

[4]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, Academic Press, (1979).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[5]

H. Chen and J. Sun, Global stability of delay multigroup epidemic models with group mixing nonlinear incidence rates,, Appl. Math. Comput., 218 (2011), 4391.  doi: 10.1016/j.amc.2011.10.015.  Google Scholar

[6]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, 1st edition, (2000).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[7]

M. J. Faddy, A note on the behavior of deterministic spatial epidemics,, Math. Biosci., 80 (1986), 19.  doi: 10.1016/0025-5564(86)90064-7.  Google Scholar

[8]

H. I. Freedman, M. X. Tang and S. G. Ruan, Uniform persistence and flows near a closed positively invariant set,, J. Dynam. Diff. Equat., 6 (1994), 583.  doi: 10.1007/BF02218848.  Google Scholar

[9]

H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Canadian Appl. Math. Quart., 14 (2006), 259.   Google Scholar

[10]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793.  doi: 10.1090/S0002-9939-08-09341-6.  Google Scholar

[11]

J. M. Hyman and T. LaForce, Modeling the spread of influenza among cities,, in Bioterrorism (eds. H. T. Banks and C. Castillo-Chavez), (2003), 211.   Google Scholar

[12]

Y. Jin and W. Wang, The effect of population dispersal on the spread of a disease,, J. Math. Anal. Appl., 308 (2005), 343.  doi: 10.1016/j.jmaa.2005.01.034.  Google Scholar

[13]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic model,, Math. Med. Biol., 21 (2004), 75.  doi: 10.1007/s11538-008-9352-z.  Google Scholar

[14]

T. Kuniya and Y. Muroya, Global stability of a multi-group SIS epidemic model for population migration,, Discrete Cont. Dyn. Sys. Series B, 19 (2014), 1105.  doi: 10.3934/dcdsb.2014.19.1105.  Google Scholar

[15]

J. P. LaSalle, The Stability of Dynamical Systems,, SIAM, (1976).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[16]

M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size,, Math. Biosci., 160 (1999), 191.  doi: 10.1016/S0025-5564(99)00030-9.  Google Scholar

[17]

M. Y. Li and Z. Shuai, Global stability of an epidemic model in a patchy environment,, Canadian Appl. Math. Quart., 17 (2009), 175.   Google Scholar

[18]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks,, J. Diff. Equat., 284 (2010), 1.  doi: 10.1016/j.jde.2009.09.003.  Google Scholar

[19]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38.  doi: 10.1016/j.jmaa.2009.09.017.  Google Scholar

[20]

Y. Muroya, Y. Enatsu and T. Kuniya, Global stability of extended multi-group SIR epidemic models with patches through migration and cross patch infection,, Acta Mathematica Scientia, 33 (2013), 341.  doi: 10.1016/S0252-9602(13)60003-X.  Google Scholar

[21]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal. RWA, 13 (2012), 1581.  doi: 10.1016/j.nonrwa.2011.11.016.  Google Scholar

[22]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition,, Cambridge University Press, (1995).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[23]

R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence,, Comput. Math. Appl., 60 (2010), 2286.  doi: 10.1016/j.camwa.2010.08.020.  Google Scholar

[24]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[25]

R. S. Varga, Matrix Iterative Analysis,, Prentice-Hall, (1962).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[26]

W. Wang and X. Zhao, An epidemic model in a patchy environment,, Math. Biosci., 190 (2004), 97.  doi: 10.1016/j.mbs.2002.11.001.  Google Scholar

[27]

Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates,, Nonlinear Anal. RWA, 11 (2010), 995.  doi: 10.1016/j.nonrwa.2009.01.040.  Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, Infectious Diseases of Humans,, Oxford University, (1991).   Google Scholar

[2]

J. Arino, Diseases in metapopulations,, in Modeling and Dynamics of Infectious Diseases (eds. Z. Ma, (2009), 65.  doi: 10.1142/7223.  Google Scholar

[3]

M. S. Bartlet, Deterministic and stochastic models for recurrent epidemics,, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, (1956), 81.   Google Scholar

[4]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, Academic Press, (1979).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[5]

H. Chen and J. Sun, Global stability of delay multigroup epidemic models with group mixing nonlinear incidence rates,, Appl. Math. Comput., 218 (2011), 4391.  doi: 10.1016/j.amc.2011.10.015.  Google Scholar

[6]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, 1st edition, (2000).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[7]

M. J. Faddy, A note on the behavior of deterministic spatial epidemics,, Math. Biosci., 80 (1986), 19.  doi: 10.1016/0025-5564(86)90064-7.  Google Scholar

[8]

H. I. Freedman, M. X. Tang and S. G. Ruan, Uniform persistence and flows near a closed positively invariant set,, J. Dynam. Diff. Equat., 6 (1994), 583.  doi: 10.1007/BF02218848.  Google Scholar

[9]

H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Canadian Appl. Math. Quart., 14 (2006), 259.   Google Scholar

[10]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793.  doi: 10.1090/S0002-9939-08-09341-6.  Google Scholar

[11]

J. M. Hyman and T. LaForce, Modeling the spread of influenza among cities,, in Bioterrorism (eds. H. T. Banks and C. Castillo-Chavez), (2003), 211.   Google Scholar

[12]

Y. Jin and W. Wang, The effect of population dispersal on the spread of a disease,, J. Math. Anal. Appl., 308 (2005), 343.  doi: 10.1016/j.jmaa.2005.01.034.  Google Scholar

[13]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic model,, Math. Med. Biol., 21 (2004), 75.  doi: 10.1007/s11538-008-9352-z.  Google Scholar

[14]

T. Kuniya and Y. Muroya, Global stability of a multi-group SIS epidemic model for population migration,, Discrete Cont. Dyn. Sys. Series B, 19 (2014), 1105.  doi: 10.3934/dcdsb.2014.19.1105.  Google Scholar

[15]

J. P. LaSalle, The Stability of Dynamical Systems,, SIAM, (1976).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[16]

M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size,, Math. Biosci., 160 (1999), 191.  doi: 10.1016/S0025-5564(99)00030-9.  Google Scholar

[17]

M. Y. Li and Z. Shuai, Global stability of an epidemic model in a patchy environment,, Canadian Appl. Math. Quart., 17 (2009), 175.   Google Scholar

[18]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks,, J. Diff. Equat., 284 (2010), 1.  doi: 10.1016/j.jde.2009.09.003.  Google Scholar

[19]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38.  doi: 10.1016/j.jmaa.2009.09.017.  Google Scholar

[20]

Y. Muroya, Y. Enatsu and T. Kuniya, Global stability of extended multi-group SIR epidemic models with patches through migration and cross patch infection,, Acta Mathematica Scientia, 33 (2013), 341.  doi: 10.1016/S0252-9602(13)60003-X.  Google Scholar

[21]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal. RWA, 13 (2012), 1581.  doi: 10.1016/j.nonrwa.2011.11.016.  Google Scholar

[22]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition,, Cambridge University Press, (1995).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[23]

R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence,, Comput. Math. Appl., 60 (2010), 2286.  doi: 10.1016/j.camwa.2010.08.020.  Google Scholar

[24]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[25]

R. S. Varga, Matrix Iterative Analysis,, Prentice-Hall, (1962).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[26]

W. Wang and X. Zhao, An epidemic model in a patchy environment,, Math. Biosci., 190 (2004), 97.  doi: 10.1016/j.mbs.2002.11.001.  Google Scholar

[27]

Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates,, Nonlinear Anal. RWA, 11 (2010), 995.  doi: 10.1016/j.nonrwa.2009.01.040.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[5]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[6]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[7]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[8]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[9]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[10]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[13]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[16]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[17]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (3)

[Back to Top]