-
Previous Article
Effects of elongation delay in transcription dynamics
- MBE Home
- This Issue
-
Next Article
A new model with delay for mosquito population dynamics
A stochastic simulation model for Anelosimus studiosus during prey capture: A case study for determination of optimal spacing
1. | Department of Mathematics & Statistics and Institute for Quantitative Biology, East Tennessee State University, Johnson City, TN, 37659 |
2. | Department of Mathematics & Statistics, East Tennessee State University, Johnson City, TN, 37659, United States |
3. | Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37659, United States, United States |
References:
[1] |
L. Aviles, The Evolution of Social Behavior in Insects and Arachnids,, ch. Causes and consequences of cooperation and permanent-sociality in spiders, (1997), 477. Google Scholar |
[2] |
D. R. Billinger, H. K. Preisler, A. A. Ager, J. G. Kie and B. S. Stewart, Modelling Movements of Free-Ranging Animals,, Tech. Report 610, (2001). Google Scholar |
[3] |
D. R. Brillinger, H. K. Preisler, A. A. Ager and J. G. Kie, An exploratory data analysis (eda) of the paths of moving animals,, Journal of Statistical Planning and Inference, 122 (2004), 43.
doi: 10.1016/j.jspi.2003.06.016. |
[4] |
V. Brach, Anelosimus studiosus (araneae: Theridiidae) and the evolution of quasisociality in theridiid spiders,, Evolution, 31 (1977), 154.
doi: 10.2307/2407553. |
[5] |
D. R. Brillinger, A particle migrating randomly on a sphere,, Journal of Theoretical Probability, 10 (1997), 429.
doi: 10.1023/A:1022869817770. |
[6] |
D. R. Brillinger and B. S. Stewart, Elephant-seal movements: Modelling migrations,, The Canadian Journal of Statistics, 26 (1998), 431.
doi: 10.2307/3315767. |
[7] |
R. Furey, Two cooperatively social populations of the theridiid spider Anelosimus studiosus in a temperate region,, Animal Behavior, 55 (1998), 727. Google Scholar |
[8] |
L. Grinstead, J. N. Pruitt, V. Settepani and T. Bilde, Individual personalities shape task differentiation in a social spider,, Proceedings of the Royal Society B, 280 (2013).
doi: 10.1098/rspb.2013.1407. |
[9] |
F. Heppner and U. Grenander, Ubiquity of Chaos,, ch. A stochastic nonlinear model for coordinated bird flocks, (1990), 233. Google Scholar |
[10] |
D. Halliday and R. Resnick, Fundamentals of Physics,, John Wiley & Sons, (1988).
doi: 10.1063/1.3070817. |
[11] |
T. Jones, S. Riechert, S. Dalrymple and P. Parker, Fostering model explains variation in levels of sociality in a spider system,, Animal Behavior, 73 (2007), 195.
doi: 10.1016/j.anbehav.2006.06.006. |
[12] |
D. G. Kendall, Pole-seeking brownian motion and bird navigation,, Journal of the Royal Statistical Society Series B, 36 (1974), 365.
|
[13] |
P. M. Kareiva and N. Shigesada, Analyzing insect movement as a correlated random walk,, Oecologia, 56 (1983), 234.
doi: 10.1007/BF00379695. |
[14] |
MATLAB, Version 8.1.0.604 (r2013a),, The MathWorks Inc., (2013). Google Scholar |
[15] |
Inc Minitab, Minitab,, Minitab, (2013). Google Scholar |
[16] |
S. A. Naftilan, Transmission of vibrations in funnel and sheet spider webs,, Biological Macromolecules, 24 (1999), 289.
doi: 10.1016/S0141-8130(98)00092-0. |
[17] |
K. B. Newman, State-space modeling of animal movement and mortality with application to salmon,, Biometrics, 54 (1998), 1290.
doi: 10.2307/2533659. |
[18] |
OSP, Tracker Video Analysis and Modeling Too,, 2013., (). Google Scholar |
[19] |
H. K. Preisler, A. A. Ager, B. K. Johnson and J. G. Kie, Modeling animal movements using stochastic differential equations,, Environmetrics, 15 (2004), 643.
doi: 10.1002/env.636. |
[20] |
H. R. Pulliam and T. Caraco, Behavioural Ecology, an Evolutionary Approach,, ch. Living in Groups: Is there Optimal Group Size?, (1984), 122.
doi: 10.1016/0003-3472(79)90082-4. |
[21] |
C. Ross, Ontongeny and Diel Rhythm in Spacing Within a Subsocial web of Anelosimus Studiosus (Araneael Therididdae),, Honor's Thesis, (2013). Google Scholar |
[22] |
L. S. Rayor and G. W. Uetz, Trade-offs in foraging success and predation risk with spatial position in colonial spiders,, Behavioral Ecology Sociobiology, 27 (1990), 77.
doi: 10.1007/BF00168449. |
[23] |
P. E. Smouse, S. Focardi, P. R. Moorcroft, J. G. Kie, J. D. Forester and J. M. Morales, Stochastic modelling of animal movement,, Phi.l Trans. R. Soc. B., 365 (2010), 2201.
doi: 10.1098/rstb.2010.0078. |
[24] |
G. W. Uetz and C. S. Hieber, Evolution of social behaviour in insects and arachnids,, ch. Colonial Web-building Spiders: Balancing the Costs and Benefits of Group Living, (1997), 458. Google Scholar |
show all references
References:
[1] |
L. Aviles, The Evolution of Social Behavior in Insects and Arachnids,, ch. Causes and consequences of cooperation and permanent-sociality in spiders, (1997), 477. Google Scholar |
[2] |
D. R. Billinger, H. K. Preisler, A. A. Ager, J. G. Kie and B. S. Stewart, Modelling Movements of Free-Ranging Animals,, Tech. Report 610, (2001). Google Scholar |
[3] |
D. R. Brillinger, H. K. Preisler, A. A. Ager and J. G. Kie, An exploratory data analysis (eda) of the paths of moving animals,, Journal of Statistical Planning and Inference, 122 (2004), 43.
doi: 10.1016/j.jspi.2003.06.016. |
[4] |
V. Brach, Anelosimus studiosus (araneae: Theridiidae) and the evolution of quasisociality in theridiid spiders,, Evolution, 31 (1977), 154.
doi: 10.2307/2407553. |
[5] |
D. R. Brillinger, A particle migrating randomly on a sphere,, Journal of Theoretical Probability, 10 (1997), 429.
doi: 10.1023/A:1022869817770. |
[6] |
D. R. Brillinger and B. S. Stewart, Elephant-seal movements: Modelling migrations,, The Canadian Journal of Statistics, 26 (1998), 431.
doi: 10.2307/3315767. |
[7] |
R. Furey, Two cooperatively social populations of the theridiid spider Anelosimus studiosus in a temperate region,, Animal Behavior, 55 (1998), 727. Google Scholar |
[8] |
L. Grinstead, J. N. Pruitt, V. Settepani and T. Bilde, Individual personalities shape task differentiation in a social spider,, Proceedings of the Royal Society B, 280 (2013).
doi: 10.1098/rspb.2013.1407. |
[9] |
F. Heppner and U. Grenander, Ubiquity of Chaos,, ch. A stochastic nonlinear model for coordinated bird flocks, (1990), 233. Google Scholar |
[10] |
D. Halliday and R. Resnick, Fundamentals of Physics,, John Wiley & Sons, (1988).
doi: 10.1063/1.3070817. |
[11] |
T. Jones, S. Riechert, S. Dalrymple and P. Parker, Fostering model explains variation in levels of sociality in a spider system,, Animal Behavior, 73 (2007), 195.
doi: 10.1016/j.anbehav.2006.06.006. |
[12] |
D. G. Kendall, Pole-seeking brownian motion and bird navigation,, Journal of the Royal Statistical Society Series B, 36 (1974), 365.
|
[13] |
P. M. Kareiva and N. Shigesada, Analyzing insect movement as a correlated random walk,, Oecologia, 56 (1983), 234.
doi: 10.1007/BF00379695. |
[14] |
MATLAB, Version 8.1.0.604 (r2013a),, The MathWorks Inc., (2013). Google Scholar |
[15] |
Inc Minitab, Minitab,, Minitab, (2013). Google Scholar |
[16] |
S. A. Naftilan, Transmission of vibrations in funnel and sheet spider webs,, Biological Macromolecules, 24 (1999), 289.
doi: 10.1016/S0141-8130(98)00092-0. |
[17] |
K. B. Newman, State-space modeling of animal movement and mortality with application to salmon,, Biometrics, 54 (1998), 1290.
doi: 10.2307/2533659. |
[18] |
OSP, Tracker Video Analysis and Modeling Too,, 2013., (). Google Scholar |
[19] |
H. K. Preisler, A. A. Ager, B. K. Johnson and J. G. Kie, Modeling animal movements using stochastic differential equations,, Environmetrics, 15 (2004), 643.
doi: 10.1002/env.636. |
[20] |
H. R. Pulliam and T. Caraco, Behavioural Ecology, an Evolutionary Approach,, ch. Living in Groups: Is there Optimal Group Size?, (1984), 122.
doi: 10.1016/0003-3472(79)90082-4. |
[21] |
C. Ross, Ontongeny and Diel Rhythm in Spacing Within a Subsocial web of Anelosimus Studiosus (Araneael Therididdae),, Honor's Thesis, (2013). Google Scholar |
[22] |
L. S. Rayor and G. W. Uetz, Trade-offs in foraging success and predation risk with spatial position in colonial spiders,, Behavioral Ecology Sociobiology, 27 (1990), 77.
doi: 10.1007/BF00168449. |
[23] |
P. E. Smouse, S. Focardi, P. R. Moorcroft, J. G. Kie, J. D. Forester and J. M. Morales, Stochastic modelling of animal movement,, Phi.l Trans. R. Soc. B., 365 (2010), 2201.
doi: 10.1098/rstb.2010.0078. |
[24] |
G. W. Uetz and C. S. Hieber, Evolution of social behaviour in insects and arachnids,, ch. Colonial Web-building Spiders: Balancing the Costs and Benefits of Group Living, (1997), 458. Google Scholar |
[1] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[2] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[3] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[4] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[5] |
M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424 |
[6] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[7] |
Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382 |
[8] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[9] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021012 |
[10] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[11] |
Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219 |
[12] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[13] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[14] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[15] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[16] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[17] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[18] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[19] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[20] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]