-
Previous Article
Effects of elongation delay in transcription dynamics
- MBE Home
- This Issue
-
Next Article
A new model with delay for mosquito population dynamics
A stochastic simulation model for Anelosimus studiosus during prey capture: A case study for determination of optimal spacing
1. | Department of Mathematics & Statistics and Institute for Quantitative Biology, East Tennessee State University, Johnson City, TN, 37659 |
2. | Department of Mathematics & Statistics, East Tennessee State University, Johnson City, TN, 37659, United States |
3. | Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37659, United States, United States |
References:
[1] |
L. Aviles, The Evolution of Social Behavior in Insects and Arachnids, ch. Causes and consequences of cooperation and permanent-sociality in spiders, Cambridge Press, New York, 1997, 477-498. |
[2] |
D. R. Billinger, H. K. Preisler, A. A. Ager, J. G. Kie and B. S. Stewart, Modelling Movements of Free-Ranging Animals, Tech. Report 610, Department of Statistics, University of California, Berkeley, 2001. |
[3] |
D. R. Brillinger, H. K. Preisler, A. A. Ager and J. G. Kie, An exploratory data analysis (eda) of the paths of moving animals, Journal of Statistical Planning and Inference, 122 (2004), 43-63.
doi: 10.1016/j.jspi.2003.06.016. |
[4] |
V. Brach, Anelosimus studiosus (araneae: Theridiidae) and the evolution of quasisociality in theridiid spiders, Evolution, 31 (1977), 154-161.
doi: 10.2307/2407553. |
[5] |
D. R. Brillinger, A particle migrating randomly on a sphere, Journal of Theoretical Probability, 10 (1997), 429-443.
doi: 10.1023/A:1022869817770. |
[6] |
D. R. Brillinger and B. S. Stewart, Elephant-seal movements: Modelling migrations, The Canadian Journal of Statistics, 26 (1998), 431-443.
doi: 10.2307/3315767. |
[7] |
R. Furey, Two cooperatively social populations of the theridiid spider Anelosimus studiosus in a temperate region, Animal Behavior, 55 (1998), 727-735. |
[8] |
L. Grinstead, J. N. Pruitt, V. Settepani and T. Bilde, Individual personalities shape task differentiation in a social spider, Proceedings of the Royal Society B, 280 (2013).
doi: 10.1098/rspb.2013.1407. |
[9] |
F. Heppner and U. Grenander, Ubiquity of Chaos, ch. A stochastic nonlinear model for coordinated bird flocks, AAAS Publications, Washington, DC, 1990, 233-238. |
[10] |
D. Halliday and R. Resnick, Fundamentals of Physics, John Wiley & Sons, Inc., New York, 1988.
doi: 10.1063/1.3070817. |
[11] |
T. Jones, S. Riechert, S. Dalrymple and P. Parker, Fostering model explains variation in levels of sociality in a spider system, Animal Behavior, 73 (2007), 195-204.
doi: 10.1016/j.anbehav.2006.06.006. |
[12] |
D. G. Kendall, Pole-seeking brownian motion and bird navigation, Journal of the Royal Statistical Society Series B, 36 (1974), 365-417. |
[13] |
P. M. Kareiva and N. Shigesada, Analyzing insect movement as a correlated random walk, Oecologia, 56 (1983), 234-238.
doi: 10.1007/BF00379695. |
[14] |
MATLAB, Version 8.1.0.604 (r2013a), The MathWorks Inc., Natick, Massachusetts, 2013. |
[15] | |
[16] |
S. A. Naftilan, Transmission of vibrations in funnel and sheet spider webs, Biological Macromolecules, 24 (1999), 289-293.
doi: 10.1016/S0141-8130(98)00092-0. |
[17] |
K. B. Newman, State-space modeling of animal movement and mortality with application to salmon, Biometrics, 54 (1998), 1290-1314.
doi: 10.2307/2533659. |
[18] | |
[19] |
H. K. Preisler, A. A. Ager, B. K. Johnson and J. G. Kie, Modeling animal movements using stochastic differential equations, Environmetrics, 15 (2004), 643-657.
doi: 10.1002/env.636. |
[20] |
H. R. Pulliam and T. Caraco, Behavioural Ecology, an Evolutionary Approach, ch. Living in Groups: Is there Optimal Group Size?, Sinauer, Siunderland, 1984, 122-147.
doi: 10.1016/0003-3472(79)90082-4. |
[21] |
C. Ross, Ontongeny and Diel Rhythm in Spacing Within a Subsocial web of Anelosimus Studiosus (Araneael Therididdae), Honor's Thesis, East Tennessee State University, May 2013. |
[22] |
L. S. Rayor and G. W. Uetz, Trade-offs in foraging success and predation risk with spatial position in colonial spiders, Behavioral Ecology Sociobiology, 27 (1990), 77-85.
doi: 10.1007/BF00168449. |
[23] |
P. E. Smouse, S. Focardi, P. R. Moorcroft, J. G. Kie, J. D. Forester and J. M. Morales, Stochastic modelling of animal movement, Phi.l Trans. R. Soc. B., 365 (2010), 2201-2211.
doi: 10.1098/rstb.2010.0078. |
[24] |
G. W. Uetz and C. S. Hieber, Evolution of social behaviour in insects and arachnids, ch. Colonial Web-building Spiders: Balancing the Costs and Benefits of Group Living, Cambridge Press, Cambridge, 1997, 458-475. |
show all references
References:
[1] |
L. Aviles, The Evolution of Social Behavior in Insects and Arachnids, ch. Causes and consequences of cooperation and permanent-sociality in spiders, Cambridge Press, New York, 1997, 477-498. |
[2] |
D. R. Billinger, H. K. Preisler, A. A. Ager, J. G. Kie and B. S. Stewart, Modelling Movements of Free-Ranging Animals, Tech. Report 610, Department of Statistics, University of California, Berkeley, 2001. |
[3] |
D. R. Brillinger, H. K. Preisler, A. A. Ager and J. G. Kie, An exploratory data analysis (eda) of the paths of moving animals, Journal of Statistical Planning and Inference, 122 (2004), 43-63.
doi: 10.1016/j.jspi.2003.06.016. |
[4] |
V. Brach, Anelosimus studiosus (araneae: Theridiidae) and the evolution of quasisociality in theridiid spiders, Evolution, 31 (1977), 154-161.
doi: 10.2307/2407553. |
[5] |
D. R. Brillinger, A particle migrating randomly on a sphere, Journal of Theoretical Probability, 10 (1997), 429-443.
doi: 10.1023/A:1022869817770. |
[6] |
D. R. Brillinger and B. S. Stewart, Elephant-seal movements: Modelling migrations, The Canadian Journal of Statistics, 26 (1998), 431-443.
doi: 10.2307/3315767. |
[7] |
R. Furey, Two cooperatively social populations of the theridiid spider Anelosimus studiosus in a temperate region, Animal Behavior, 55 (1998), 727-735. |
[8] |
L. Grinstead, J. N. Pruitt, V. Settepani and T. Bilde, Individual personalities shape task differentiation in a social spider, Proceedings of the Royal Society B, 280 (2013).
doi: 10.1098/rspb.2013.1407. |
[9] |
F. Heppner and U. Grenander, Ubiquity of Chaos, ch. A stochastic nonlinear model for coordinated bird flocks, AAAS Publications, Washington, DC, 1990, 233-238. |
[10] |
D. Halliday and R. Resnick, Fundamentals of Physics, John Wiley & Sons, Inc., New York, 1988.
doi: 10.1063/1.3070817. |
[11] |
T. Jones, S. Riechert, S. Dalrymple and P. Parker, Fostering model explains variation in levels of sociality in a spider system, Animal Behavior, 73 (2007), 195-204.
doi: 10.1016/j.anbehav.2006.06.006. |
[12] |
D. G. Kendall, Pole-seeking brownian motion and bird navigation, Journal of the Royal Statistical Society Series B, 36 (1974), 365-417. |
[13] |
P. M. Kareiva and N. Shigesada, Analyzing insect movement as a correlated random walk, Oecologia, 56 (1983), 234-238.
doi: 10.1007/BF00379695. |
[14] |
MATLAB, Version 8.1.0.604 (r2013a), The MathWorks Inc., Natick, Massachusetts, 2013. |
[15] | |
[16] |
S. A. Naftilan, Transmission of vibrations in funnel and sheet spider webs, Biological Macromolecules, 24 (1999), 289-293.
doi: 10.1016/S0141-8130(98)00092-0. |
[17] |
K. B. Newman, State-space modeling of animal movement and mortality with application to salmon, Biometrics, 54 (1998), 1290-1314.
doi: 10.2307/2533659. |
[18] | |
[19] |
H. K. Preisler, A. A. Ager, B. K. Johnson and J. G. Kie, Modeling animal movements using stochastic differential equations, Environmetrics, 15 (2004), 643-657.
doi: 10.1002/env.636. |
[20] |
H. R. Pulliam and T. Caraco, Behavioural Ecology, an Evolutionary Approach, ch. Living in Groups: Is there Optimal Group Size?, Sinauer, Siunderland, 1984, 122-147.
doi: 10.1016/0003-3472(79)90082-4. |
[21] |
C. Ross, Ontongeny and Diel Rhythm in Spacing Within a Subsocial web of Anelosimus Studiosus (Araneael Therididdae), Honor's Thesis, East Tennessee State University, May 2013. |
[22] |
L. S. Rayor and G. W. Uetz, Trade-offs in foraging success and predation risk with spatial position in colonial spiders, Behavioral Ecology Sociobiology, 27 (1990), 77-85.
doi: 10.1007/BF00168449. |
[23] |
P. E. Smouse, S. Focardi, P. R. Moorcroft, J. G. Kie, J. D. Forester and J. M. Morales, Stochastic modelling of animal movement, Phi.l Trans. R. Soc. B., 365 (2010), 2201-2211.
doi: 10.1098/rstb.2010.0078. |
[24] |
G. W. Uetz and C. S. Hieber, Evolution of social behaviour in insects and arachnids, ch. Colonial Web-building Spiders: Balancing the Costs and Benefits of Group Living, Cambridge Press, Cambridge, 1997, 458-475. |
[1] |
Alex John Quijano, Michele L. Joyner, Edith Seier, Nathaniel Hancock, Michael Largent, Thomas C. Jones. An aggregate stochastic model incorporating individual dynamics for predation movements of anelosimus studiosus. Mathematical Biosciences & Engineering, 2015, 12 (3) : 585-607. doi: 10.3934/mbe.2015.12.585 |
[2] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial and Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[3] |
Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1 |
[4] |
Thomas Hillen, Peter Hinow, Zhi-An Wang. Mathematical analysis of a kinetic model for cell movement in network tissues. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1055-1080. doi: 10.3934/dcdsb.2010.14.1055 |
[5] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[6] |
William Wolesensky, J. David Logan. An individual, stochastic model of growth incorporating state-dependent risk and random foraging and climate. Mathematical Biosciences & Engineering, 2007, 4 (1) : 67-84. doi: 10.3934/mbe.2007.4.67 |
[7] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4887-4905. doi: 10.3934/dcdsb.2020317 |
[8] |
Serap Ergün, Bariş Bülent Kırlar, Sırma Zeynep Alparslan Gök, Gerhard-Wilhelm Weber. An application of crypto cloud computing in social networks by cooperative game theory. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1927-1941. doi: 10.3934/jimo.2019036 |
[9] |
Pierre Degond, Maximilian Engel. Numerical approximation of a coagulation-fragmentation model for animal group size statistics. Networks and Heterogeneous Media, 2017, 12 (2) : 217-243. doi: 10.3934/nhm.2017009 |
[10] |
Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049 |
[11] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[12] |
Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907 |
[13] |
Hao Wen, Jianhua Huang, Yuhong Li. Propagation of stochastic travelling waves of cooperative systems with noise. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021295 |
[14] |
Filipe Martins, Alberto A. Pinto, Jorge Passamani Zubelli. Nash and social welfare impact in an international trade model. Journal of Dynamics and Games, 2017, 4 (2) : 149-173. doi: 10.3934/jdg.2017009 |
[15] |
Komi Messan, Yun Kang. A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 947-976. doi: 10.3934/dcdsb.2017048 |
[16] |
G. Donald Allen. A dynamic model for competitive-cooperative species. Conference Publications, 1998, 1998 (Special) : 29-50. doi: 10.3934/proc.1998.1998.29 |
[17] |
Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609 |
[18] |
Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591 |
[19] |
Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085 |
[20] |
András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]