2014, 11(6): 1411-1429. doi: 10.3934/mbe.2014.11.1411

A stochastic simulation model for Anelosimus studiosus during prey capture: A case study for determination of optimal spacing

1. 

Department of Mathematics & Statistics and Institute for Quantitative Biology, East Tennessee State University, Johnson City, TN, 37659

2. 

Department of Mathematics & Statistics, East Tennessee State University, Johnson City, TN, 37659, United States

3. 

Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37659, United States, United States

Received  November 2013 Revised  August 2014 Published  September 2014

In this paper, we develop a stochastic differential equation model to simulate the movement of a social/subsocial spider species, Anelosimus studiosus, during prey capture using experimental data collected in a structured environment. In a subsocial species, females and their maturing offspring share a web and cooperate in web maintenance and prey capture. Furthermore, observations indicate these colonies change their positioning throughout the day, clustered during certain times of the day while spaced out at other times. One key question was whether or not the spiders spaced out ``optimally'' to cooperate in prey capture. In this paper, we first show the derivation of the model where experimental data is used to determine key parameters within the model. We then use this model to test the success of prey capture under a variety of different spatial configurations for varying colony sizes to determine the best spatial configuration for prey capture.
Citation: Michele L. Joyner, Chelsea R. Ross, Colton Watts, Thomas C. Jones. A stochastic simulation model for Anelosimus studiosus during prey capture: A case study for determination of optimal spacing. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1411-1429. doi: 10.3934/mbe.2014.11.1411
References:
[1]

L. Aviles, The Evolution of Social Behavior in Insects and Arachnids,, ch. Causes and consequences of cooperation and permanent-sociality in spiders, (1997), 477.   Google Scholar

[2]

D. R. Billinger, H. K. Preisler, A. A. Ager, J. G. Kie and B. S. Stewart, Modelling Movements of Free-Ranging Animals,, Tech. Report 610, (2001).   Google Scholar

[3]

D. R. Brillinger, H. K. Preisler, A. A. Ager and J. G. Kie, An exploratory data analysis (eda) of the paths of moving animals,, Journal of Statistical Planning and Inference, 122 (2004), 43.  doi: 10.1016/j.jspi.2003.06.016.  Google Scholar

[4]

V. Brach, Anelosimus studiosus (araneae: Theridiidae) and the evolution of quasisociality in theridiid spiders,, Evolution, 31 (1977), 154.  doi: 10.2307/2407553.  Google Scholar

[5]

D. R. Brillinger, A particle migrating randomly on a sphere,, Journal of Theoretical Probability, 10 (1997), 429.  doi: 10.1023/A:1022869817770.  Google Scholar

[6]

D. R. Brillinger and B. S. Stewart, Elephant-seal movements: Modelling migrations,, The Canadian Journal of Statistics, 26 (1998), 431.  doi: 10.2307/3315767.  Google Scholar

[7]

R. Furey, Two cooperatively social populations of the theridiid spider Anelosimus studiosus in a temperate region,, Animal Behavior, 55 (1998), 727.   Google Scholar

[8]

L. Grinstead, J. N. Pruitt, V. Settepani and T. Bilde, Individual personalities shape task differentiation in a social spider,, Proceedings of the Royal Society B, 280 (2013).  doi: 10.1098/rspb.2013.1407.  Google Scholar

[9]

F. Heppner and U. Grenander, Ubiquity of Chaos,, ch. A stochastic nonlinear model for coordinated bird flocks, (1990), 233.   Google Scholar

[10]

D. Halliday and R. Resnick, Fundamentals of Physics,, John Wiley & Sons, (1988).  doi: 10.1063/1.3070817.  Google Scholar

[11]

T. Jones, S. Riechert, S. Dalrymple and P. Parker, Fostering model explains variation in levels of sociality in a spider system,, Animal Behavior, 73 (2007), 195.  doi: 10.1016/j.anbehav.2006.06.006.  Google Scholar

[12]

D. G. Kendall, Pole-seeking brownian motion and bird navigation,, Journal of the Royal Statistical Society Series B, 36 (1974), 365.   Google Scholar

[13]

P. M. Kareiva and N. Shigesada, Analyzing insect movement as a correlated random walk,, Oecologia, 56 (1983), 234.  doi: 10.1007/BF00379695.  Google Scholar

[14]

MATLAB, Version 8.1.0.604 (r2013a),, The MathWorks Inc., (2013).   Google Scholar

[15]

Inc Minitab, Minitab,, Minitab, (2013).   Google Scholar

[16]

S. A. Naftilan, Transmission of vibrations in funnel and sheet spider webs,, Biological Macromolecules, 24 (1999), 289.  doi: 10.1016/S0141-8130(98)00092-0.  Google Scholar

[17]

K. B. Newman, State-space modeling of animal movement and mortality with application to salmon,, Biometrics, 54 (1998), 1290.  doi: 10.2307/2533659.  Google Scholar

[18]

OSP, Tracker Video Analysis and Modeling Too,, 2013., ().   Google Scholar

[19]

H. K. Preisler, A. A. Ager, B. K. Johnson and J. G. Kie, Modeling animal movements using stochastic differential equations,, Environmetrics, 15 (2004), 643.  doi: 10.1002/env.636.  Google Scholar

[20]

H. R. Pulliam and T. Caraco, Behavioural Ecology, an Evolutionary Approach,, ch. Living in Groups: Is there Optimal Group Size?, (1984), 122.  doi: 10.1016/0003-3472(79)90082-4.  Google Scholar

[21]

C. Ross, Ontongeny and Diel Rhythm in Spacing Within a Subsocial web of Anelosimus Studiosus (Araneael Therididdae),, Honor's Thesis, (2013).   Google Scholar

[22]

L. S. Rayor and G. W. Uetz, Trade-offs in foraging success and predation risk with spatial position in colonial spiders,, Behavioral Ecology Sociobiology, 27 (1990), 77.  doi: 10.1007/BF00168449.  Google Scholar

[23]

P. E. Smouse, S. Focardi, P. R. Moorcroft, J. G. Kie, J. D. Forester and J. M. Morales, Stochastic modelling of animal movement,, Phi.l Trans. R. Soc. B., 365 (2010), 2201.  doi: 10.1098/rstb.2010.0078.  Google Scholar

[24]

G. W. Uetz and C. S. Hieber, Evolution of social behaviour in insects and arachnids,, ch. Colonial Web-building Spiders: Balancing the Costs and Benefits of Group Living, (1997), 458.   Google Scholar

show all references

References:
[1]

L. Aviles, The Evolution of Social Behavior in Insects and Arachnids,, ch. Causes and consequences of cooperation and permanent-sociality in spiders, (1997), 477.   Google Scholar

[2]

D. R. Billinger, H. K. Preisler, A. A. Ager, J. G. Kie and B. S. Stewart, Modelling Movements of Free-Ranging Animals,, Tech. Report 610, (2001).   Google Scholar

[3]

D. R. Brillinger, H. K. Preisler, A. A. Ager and J. G. Kie, An exploratory data analysis (eda) of the paths of moving animals,, Journal of Statistical Planning and Inference, 122 (2004), 43.  doi: 10.1016/j.jspi.2003.06.016.  Google Scholar

[4]

V. Brach, Anelosimus studiosus (araneae: Theridiidae) and the evolution of quasisociality in theridiid spiders,, Evolution, 31 (1977), 154.  doi: 10.2307/2407553.  Google Scholar

[5]

D. R. Brillinger, A particle migrating randomly on a sphere,, Journal of Theoretical Probability, 10 (1997), 429.  doi: 10.1023/A:1022869817770.  Google Scholar

[6]

D. R. Brillinger and B. S. Stewart, Elephant-seal movements: Modelling migrations,, The Canadian Journal of Statistics, 26 (1998), 431.  doi: 10.2307/3315767.  Google Scholar

[7]

R. Furey, Two cooperatively social populations of the theridiid spider Anelosimus studiosus in a temperate region,, Animal Behavior, 55 (1998), 727.   Google Scholar

[8]

L. Grinstead, J. N. Pruitt, V. Settepani and T. Bilde, Individual personalities shape task differentiation in a social spider,, Proceedings of the Royal Society B, 280 (2013).  doi: 10.1098/rspb.2013.1407.  Google Scholar

[9]

F. Heppner and U. Grenander, Ubiquity of Chaos,, ch. A stochastic nonlinear model for coordinated bird flocks, (1990), 233.   Google Scholar

[10]

D. Halliday and R. Resnick, Fundamentals of Physics,, John Wiley & Sons, (1988).  doi: 10.1063/1.3070817.  Google Scholar

[11]

T. Jones, S. Riechert, S. Dalrymple and P. Parker, Fostering model explains variation in levels of sociality in a spider system,, Animal Behavior, 73 (2007), 195.  doi: 10.1016/j.anbehav.2006.06.006.  Google Scholar

[12]

D. G. Kendall, Pole-seeking brownian motion and bird navigation,, Journal of the Royal Statistical Society Series B, 36 (1974), 365.   Google Scholar

[13]

P. M. Kareiva and N. Shigesada, Analyzing insect movement as a correlated random walk,, Oecologia, 56 (1983), 234.  doi: 10.1007/BF00379695.  Google Scholar

[14]

MATLAB, Version 8.1.0.604 (r2013a),, The MathWorks Inc., (2013).   Google Scholar

[15]

Inc Minitab, Minitab,, Minitab, (2013).   Google Scholar

[16]

S. A. Naftilan, Transmission of vibrations in funnel and sheet spider webs,, Biological Macromolecules, 24 (1999), 289.  doi: 10.1016/S0141-8130(98)00092-0.  Google Scholar

[17]

K. B. Newman, State-space modeling of animal movement and mortality with application to salmon,, Biometrics, 54 (1998), 1290.  doi: 10.2307/2533659.  Google Scholar

[18]

OSP, Tracker Video Analysis and Modeling Too,, 2013., ().   Google Scholar

[19]

H. K. Preisler, A. A. Ager, B. K. Johnson and J. G. Kie, Modeling animal movements using stochastic differential equations,, Environmetrics, 15 (2004), 643.  doi: 10.1002/env.636.  Google Scholar

[20]

H. R. Pulliam and T. Caraco, Behavioural Ecology, an Evolutionary Approach,, ch. Living in Groups: Is there Optimal Group Size?, (1984), 122.  doi: 10.1016/0003-3472(79)90082-4.  Google Scholar

[21]

C. Ross, Ontongeny and Diel Rhythm in Spacing Within a Subsocial web of Anelosimus Studiosus (Araneael Therididdae),, Honor's Thesis, (2013).   Google Scholar

[22]

L. S. Rayor and G. W. Uetz, Trade-offs in foraging success and predation risk with spatial position in colonial spiders,, Behavioral Ecology Sociobiology, 27 (1990), 77.  doi: 10.1007/BF00168449.  Google Scholar

[23]

P. E. Smouse, S. Focardi, P. R. Moorcroft, J. G. Kie, J. D. Forester and J. M. Morales, Stochastic modelling of animal movement,, Phi.l Trans. R. Soc. B., 365 (2010), 2201.  doi: 10.1098/rstb.2010.0078.  Google Scholar

[24]

G. W. Uetz and C. S. Hieber, Evolution of social behaviour in insects and arachnids,, ch. Colonial Web-building Spiders: Balancing the Costs and Benefits of Group Living, (1997), 458.   Google Scholar

[1]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[2]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[5]

M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424

[6]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[7]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[10]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[11]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[12]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[13]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[14]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[15]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[16]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[17]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[18]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[19]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[20]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (3)

[Back to Top]