\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons

Abstract Related Papers Cited by
  • With the aim to describe the interaction between a couple of neurons a stochastic model is proposed and formalized. In such a model, maintaining statements of the Leaky Integrate-and-Fire framework, we include a random component in the synaptic current, whose role is to modify the equilibrium point of the membrane potential of one of the two neurons and when a spike of the other one occurs it is turned on. The initial and after spike reset positions do not allow to identify the inter-spike intervals with the corresponding first passage times. However, we are able to apply some well-known results for the first passage time problem for the Ornstein-Uhlenbeck process in order to obtain (i) an approximation of the probability density function of the inter-spike intervals in one-way-type interaction and (ii) an approximation of the tail of the probability density function of the inter-spike intervals in the mutual interaction. Such an approximation is admissible for small instantaneous firing rates of both neurons.
    Mathematics Subject Classification: Primary: 60J60, 60J70; Secondary: 92-08.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Amemori and S. Ishii, Gaussian process approach to spiking neurons for inhomogeneous Poisson inputs, Neural Comp., 13 (2001), 2763-2797.doi: 10.1162/089976601317098529.

    [2]

    A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for evaluation of first-passage-time probability densities, Advances in Applied Probability, 19 (1987), 784-990.doi: 10.2307/1427102.

    [3]

    A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a stochastic leaky integrate-and-fire neuronal model, Neural Comput., 22 (2010), 2558-2585.doi: 10.1162/NECO_a_00023.

    [4]

    A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, The first passage time problem for gauss-diffusion processes: Algorithmic approaches and applications to lif neuronal model, Methodol. Comput. Appl. Probab., 13 (2011), 29-57.doi: 10.1007/s11009-009-9132-8.

    [5]

    A. N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biol. Cybern., 95 (2006), 1-19.doi: 10.1007/s00422-006-0068-6.

    [6]

    A. Di Crescenzo, B. Martinucci and E. Pirozzi, Feedback effects in simulated Stein's coupled neurons, in Computer Aided Systems Theory – EUROCAST 2005, Lecture Notes in Computer Science, 3643, Springer, Berlin-Heidelberg, 2005, 436-446.doi: 10.1007/11556985_57.

    [7]

    A. Di Crescenzo, B. Martinucci and E. Pirozzi, On the dynamics of a pair of coupled neurons subject to alternating input rates, BioSystems, 79 (2005), 109-116.doi: 10.1016/j.biosystems.2004.09.020.

    [8]

    E. Di Nardo, A. G. Nobile, E. Pirozzi and L. M. Ricciardi, A computational approach to first-passage-time problems for Gauss-Markov processes, Adv. Appl. Prob., 33 (2001), 453-482.doi: 10.1239/aap/999188324.

    [9]

    Y. Dong, F. Mihalas and E. Niebur, Improved integral equation solution for the first passage time of leaky integrate-and-fire neurons, Neural Computation, 23 (2011), 421-434.doi: 10.1162/NECO_a_00078.

    [10]

    V. Giorno, A. G. Nobile and L. M. Ricciardi, On the asymptotic behaviour of first-passage-time densities for one-dimensional diffusion processes and varying boundaries, Adv. Appl. Prob., 22 (1990), 883-914.doi: 10.2307/1427567.

    [11]

    D. Golomb and G. B. Ermentrout, Bistability in pulse propagation in networks of excitatory and inhibitory populations, Phys. Rev. Lett., 68 (2001), 4179-4182.doi: 10.1103/PhysRevLett.86.4179.

    [12]

    A. G. Nobile, E. Pirozzi and L. M. Ricciardi, On the estimation of first-passage time densities for a class of Gauss-Markov processes, in Computer Aided Systems Theory – EUROCAST 2007, Lecture Notes in Computer Science, 4739, Springer, Berlin-Heidelberg, 2007, 146-153.doi: 10.1007/978-3-540-75867-9_19.

    [13]

    A. G. Nobile, E. Pirozzi and L. M. Ricciardi., Asymptotics and evaluations of fpt densities through varying boundaries for Gauss-Markov processes, Scientiae Mathematicae Japonicae, 67 (2008), 241-266. Available from: http://www.jams.or.jp/scm/contents/e-2008-2/2008-12.pdf.

    [14]

    A. Politi and S. Luccioli, Dynamics of networks of leaky-integrate-and-fire neurons, in Network Science, Springer, London, 2010, 217-242.doi: 10.1007/978-1-84996-396-1_11.

    [15]

    L. Sacerdote, M. Tamborrino and C. Zucca, Detecting dependencies between spike trains of pairs of neurons through copulas, Brain Research, 1434 (2012), 243-256.doi: 10.1016/j.brainres.2011.08.064.

    [16]

    H. Sakaguchi, Oscillatory phase transition and pulse propagation in noisy integrate-and-fire neurons, Phys. Rev. E., 70 (2004), 1-4.doi: 10.1103/PhysRevE.70.022901.

    [17]

    H. Sakaguchi and S. Tobiishi, Synchronization and spindle oscillation in noisy integrate-and-fire-or-burst neurons with inhibitory coupling, Progress of Theoretical Physics, 114 (2005), 1-18.doi: 10.1143/PTP.114.539.

    [18]

    R. Sirovich, L. Sacerdote and A. E. P. Villa, Effect of increasing inhibitory inputs on information processing within a small network of spiking neurons, in Computational and Ambient Intelligence, Lecture Notes in Computer Science, 4507, Springer, Berlin-Heidelberg, 2007, 23-30.doi: 10.1007/978-3-540-73007-1_4.

    [19]

    H. Soula and C. C. Chow, Stochastic dynamics of a finite-size spiking neural network, Neural Comput., 19 (2007), 3262-3292.doi: 10.1162/neco.2007.19.12.3262.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(64) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return