2014, 11(1): 27-48. doi: 10.3934/mbe.2014.11.27

Cross nearest-spike interval based method to measure synchrony dynamics

1. 

Department of Mathematics, Facultad de Informática, Campus de Elviña s/n, 15071, Universidade da Coruña, A Coruña, Spain, Spain

2. 

Interuniversity Institute for Biostatistics and statistical Bionformatics, Hasselt University and KULeuven, Hasselt, Belgium, Belgium

3. 

Neuroscience and Motor Control Group (NEUROcom), Department of Medicine, Facultad de Ciencias de la Salud, Campus de Oza s/n, 15006, Universidade da Coruña, A Coruña, Spain, Spain, Spain

Received  December 2012 Revised  June 2013 Published  September 2013

A new synchrony index for neural activity is defined in this paper. The method is able to measure synchrony dynamics in low firing rate scenarios. It is based on the computation of the time intervals between nearest spikes of two given spike trains. Generalized additive models are proposed for the synchrony profiles obtained by this method. Two hypothesis tests are proposed to assess for differences in the level of synchronization in a real data example. Bootstrap methods are used to calibrate the distribution of the tests. Also, the expected synchrony due to chance is computed analytically and by simulation to assess for actual synchronization.
Citation: Aldana M. González Montoro, Ricardo Cao, Christel Faes, Geert Molenberghs, Nelson Espinosa, Javier Cudeiro, Jorge Mariño. Cross nearest-spike interval based method to measure synchrony dynamics. Mathematical Biosciences & Engineering, 2014, 11 (1) : 27-48. doi: 10.3934/mbe.2014.11.27
References:
[1]

M. Bazhenov, I. Timofeev, M. Steriade and T. Sejnowski, Model of thalamocortical slow-wave sleep oscillations and transitions to activated states,, The Journal of Neuroscience, 22 (2002), 8691.   Google Scholar

[2]

C. E. Bonferroni, Il calcolo delle assicurazioni su gruppi di teste,, Studi in Onore del Professore Salvatore Ortu Carboni, (1935), 13.   Google Scholar

[3]

E. N. Brown, R. E. Kass and P. P. Mitra, Multiple neural spike train data analysis: State-of-the-art and future challenges,, Nature Neuroscience, 7 (2004), 456.  doi: 10.1038/nn1228.  Google Scholar

[4]

R. Cao, M. Francisco-Fernández and E. J. Quinto, A random effect multiplicative heteroscedastic model for bacterial growth,, BMC Bioinformatics, 11 (2010).  doi: 10.1186/1471-2105-11-77.  Google Scholar

[5]

C. Faes, H. Geys, G. Molenberghs, M. Aerts, C. Cadarso-Suárez, C. Acuña and M. Cano, A flexible method to measure synchrony in neuronal firing,, J. Amer. Statist. Assoc., 103 (2008), 149.  doi: 10.1198/016214507000000419.  Google Scholar

[6]

G. L. Gerstein and D. H. Perkel, Simultaneously recorded trains of action potentials: Analysis and functional interpretation,, Science, 164 (1969), 828.  doi: 10.1126/science.164.3881.828.  Google Scholar

[7]

S. Grün, "Unitary Joint-Events in Multiple-Neuron Spiking Activity: Detection, Significance, and Interpretation,", Reihe Physik, (1996).   Google Scholar

[8]

S. Grün, M. Diesmann and A. Aertsen, Unitary events in multiple single-neuron spiking activity: I. Detection and significance,, Neural Computation, 14 (2002), 43.   Google Scholar

[9]

T. J. Hastie and R. J. Tibshirani, "Generalized Additive Models,", Monographs on Statistics and Applied Probability, 43 (1990).   Google Scholar

[10]

R. E. Kass, V. Ventura and E. N. Brown, Statistical issues in the analysis of neuronal data,, Journal of Neurophysiology, 94 (2005), 8.  doi: 10.1152/jn.00648.2004.  Google Scholar

[11]

J. Mariño and J. Cudeiro, Nitric oxide-mediated cortical activation: A diffuse wake-up system,, The Journal of Neuroscince, 23 (2003), 4299.   Google Scholar

[12]

M. Nawrot, A. Aertsen and E. Rotter, Single-trial estimation of neural firing rates: From single-neuron spike trains to population activity,, Journal of Neuroscience Methods, 94 (1999), 81.   Google Scholar

[13]

R. Q. Quiroga, T. Kreuz and P. Grassberger, Event synchronization: A simple and fast method to measure synchronicity and time delay patterns,, Physical Review E (3), 66 (2002).  doi: 10.1103/PhysRevE.66.041904.  Google Scholar

[14]

M. Steriade, D. A. McCormick and T. J. Sejnowski, Thalamocortical oscillations in the sleeping and arousal brain,, Science, 262 (1993), 679.  doi: 10.1126/science.8235588.  Google Scholar

[15]

M. Steriade, Sleep oscillations and their blockage by activating systems,, Journal of Psychiatry and Neuroscience, 19 (1994), 354.   Google Scholar

[16]

M. P. Wand and M. C. Jones, "Kernel Smoothing,", Monographs on Statistics and Applied Probability, 60 (1995).   Google Scholar

[17]

S. Wood, "Generalized Additive Models. An Introduction with R,", Texts in Statistical Science Series, (2006).   Google Scholar

show all references

References:
[1]

M. Bazhenov, I. Timofeev, M. Steriade and T. Sejnowski, Model of thalamocortical slow-wave sleep oscillations and transitions to activated states,, The Journal of Neuroscience, 22 (2002), 8691.   Google Scholar

[2]

C. E. Bonferroni, Il calcolo delle assicurazioni su gruppi di teste,, Studi in Onore del Professore Salvatore Ortu Carboni, (1935), 13.   Google Scholar

[3]

E. N. Brown, R. E. Kass and P. P. Mitra, Multiple neural spike train data analysis: State-of-the-art and future challenges,, Nature Neuroscience, 7 (2004), 456.  doi: 10.1038/nn1228.  Google Scholar

[4]

R. Cao, M. Francisco-Fernández and E. J. Quinto, A random effect multiplicative heteroscedastic model for bacterial growth,, BMC Bioinformatics, 11 (2010).  doi: 10.1186/1471-2105-11-77.  Google Scholar

[5]

C. Faes, H. Geys, G. Molenberghs, M. Aerts, C. Cadarso-Suárez, C. Acuña and M. Cano, A flexible method to measure synchrony in neuronal firing,, J. Amer. Statist. Assoc., 103 (2008), 149.  doi: 10.1198/016214507000000419.  Google Scholar

[6]

G. L. Gerstein and D. H. Perkel, Simultaneously recorded trains of action potentials: Analysis and functional interpretation,, Science, 164 (1969), 828.  doi: 10.1126/science.164.3881.828.  Google Scholar

[7]

S. Grün, "Unitary Joint-Events in Multiple-Neuron Spiking Activity: Detection, Significance, and Interpretation,", Reihe Physik, (1996).   Google Scholar

[8]

S. Grün, M. Diesmann and A. Aertsen, Unitary events in multiple single-neuron spiking activity: I. Detection and significance,, Neural Computation, 14 (2002), 43.   Google Scholar

[9]

T. J. Hastie and R. J. Tibshirani, "Generalized Additive Models,", Monographs on Statistics and Applied Probability, 43 (1990).   Google Scholar

[10]

R. E. Kass, V. Ventura and E. N. Brown, Statistical issues in the analysis of neuronal data,, Journal of Neurophysiology, 94 (2005), 8.  doi: 10.1152/jn.00648.2004.  Google Scholar

[11]

J. Mariño and J. Cudeiro, Nitric oxide-mediated cortical activation: A diffuse wake-up system,, The Journal of Neuroscince, 23 (2003), 4299.   Google Scholar

[12]

M. Nawrot, A. Aertsen and E. Rotter, Single-trial estimation of neural firing rates: From single-neuron spike trains to population activity,, Journal of Neuroscience Methods, 94 (1999), 81.   Google Scholar

[13]

R. Q. Quiroga, T. Kreuz and P. Grassberger, Event synchronization: A simple and fast method to measure synchronicity and time delay patterns,, Physical Review E (3), 66 (2002).  doi: 10.1103/PhysRevE.66.041904.  Google Scholar

[14]

M. Steriade, D. A. McCormick and T. J. Sejnowski, Thalamocortical oscillations in the sleeping and arousal brain,, Science, 262 (1993), 679.  doi: 10.1126/science.8235588.  Google Scholar

[15]

M. Steriade, Sleep oscillations and their blockage by activating systems,, Journal of Psychiatry and Neuroscience, 19 (1994), 354.   Google Scholar

[16]

M. P. Wand and M. C. Jones, "Kernel Smoothing,", Monographs on Statistics and Applied Probability, 60 (1995).   Google Scholar

[17]

S. Wood, "Generalized Additive Models. An Introduction with R,", Texts in Statistical Science Series, (2006).   Google Scholar

[1]

Marie Levakova. Effect of spontaneous activity on stimulus detection in a simple neuronal model. Mathematical Biosciences & Engineering, 2016, 13 (3) : 551-568. doi: 10.3934/mbe.2016007

[2]

Shahad Al-azzawi, Jicheng Liu, Xianming Liu. Convergence rate of synchronization of systems with additive noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 227-245. doi: 10.3934/dcdsb.2017012

[3]

Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks & Heterogeneous Media, 2015, 10 (4) : 787-807. doi: 10.3934/nhm.2015.10.787

[4]

Tatsien Li, Bopeng Rao, Yimin Wei. Generalized exact boundary synchronization for a coupled system of wave equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2893-2905. doi: 10.3934/dcds.2014.34.2893

[5]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[6]

Edson Pindza, Francis Youbi, Eben Maré, Matt Davison. Barycentric spectral domain decomposition methods for valuing a class of infinite activity Lévy models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 625-643. doi: 10.3934/dcdss.2019040

[7]

Hyeong-Ohk Bae, Bum Ja Jin. Estimates of the wake for the 3D Oseen equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 1-18. doi: 10.3934/dcdsb.2008.10.1

[8]

Christian Kuehn, Thilo Gross. Nonlocal generalized models of predator-prey systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 693-720. doi: 10.3934/dcdsb.2013.18.693

[9]

Teresa Faria, Eduardo Liz, José J. Oliveira, Sergei Trofimchuk. On a generalized Yorke condition for scalar delayed population models. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 481-500. doi: 10.3934/dcds.2005.12.481

[10]

Maxime Breden, Jean-Philippe Lessard. Polynomial interpolation and a priori bootstrap for computer-assisted proofs in nonlinear ODEs. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2825-2858. doi: 10.3934/dcdsb.2018164

[11]

Rabah Labbas, Keddour Lemrabet, Stéphane Maingot, Alexandre Thorel. Generalized linear models for population dynamics in two juxtaposed habitats. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2933-2960. doi: 10.3934/dcds.2019122

[12]

Sangkyu Baek, Bong Dae Choi. Performance of an efficient sleep mode operation for IEEE 802.16m. Journal of Industrial & Management Optimization, 2011, 7 (3) : 623-639. doi: 10.3934/jimo.2011.7.623

[13]

D. Mackey, E. Kelly, R. Nooney. Modelling random antibody adsorption and immunoassay activity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1159-1168. doi: 10.3934/mbe.2016036

[14]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[15]

Michael Cranston, Benjamin Gess, Michael Scheutzow. Weak synchronization for isotropic flows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3003-3014. doi: 10.3934/dcdsb.2016084

[16]

Oleg V. Kaptsov, Alexey V. Schmidt. Reduction of three-dimensional model of the far turbulent wake to one-dimensional problem. Conference Publications, 2011, 2011 (Special) : 794-802. doi: 10.3934/proc.2011.2011.794

[17]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[18]

Irena PawŁow. The Cahn--Hilliard--de Gennes and generalized Penrose--Fife models for polymer phase separation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2711-2739. doi: 10.3934/dcds.2015.35.2711

[19]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[20]

Jian Xiong, Yingwu Chen, Zhongbao Zhou. Resilience analysis for project scheduling with renewable resource constraint and uncertain activity durations. Journal of Industrial & Management Optimization, 2016, 12 (2) : 719-737. doi: 10.3934/jimo.2016.12.719

[Back to Top]