2014, 11(2): 285-302. doi: 10.3934/mbe.2014.11.285

On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model

1. 

Dipartimento di Studi e Ricerche Aziendali (Management &Information Technology), Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (SA), Italy

2. 

Dipartimento di Matematica, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (SA), Italy

Received  October 2012 Revised  January 2013 Published  October 2013

An Ornstein-Uhlenbeck diffusion process is considered as a model for the membrane potential activity of a single neuron. We assume that the neuron is subject to a sequence of inhibitory and excitatory post-synaptic potentials that occur with time-dependent rates. The resulting process is characterized by time-dependent drift. For this model, we construct the return process describing the membrane potential. It is a non homogeneous Ornstein-Uhlenbeck process with jumps on which the effect of random refractoriness is introduced. An asymptotic analysis of the process modeling the number of firings and the distribution of interspike intervals is performed under the assumption of exponential distribution for the firing time. Some numerical evaluations are performed to provide quantitative information on the role of the parameters.
Citation: Virginia Giorno, Serena Spina. On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 285-302. doi: 10.3934/mbe.2014.11.285
References:
[1]

A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities,, Adv. Appl. Prob., 19 (1987), 784.  doi: 10.2307/1427102.  Google Scholar

[2]

A. Buonocore, L. Caputo and E. Pirozzi, On the evaluation of firing densities for periodically driven neuron models,, Math. Biosci., 214 (2008), 122.  doi: 10.1016/j.mbs.2008.02.003.  Google Scholar

[3]

R. M. Capocelli and L. M. Ricciardi, Diffusion approximation and first passage time problem for a model neuron,, Kybernetik (Berlin), 8 (1971), 214.  doi: 10.1007/BF00288750.  Google Scholar

[4]

S. Ditlevsen and P. Lansky, Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model,, Phys. Rev. E (3), 71 (2005).  doi: 10.1103/PhysRevE.71.011907.  Google Scholar

[5]

S. Ditlevsen and P. Lansky, Comparison of statistical methods for estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model from first-passage times data,, in Collective Dynamics: Topics on Competition and Cooperation in the Biosciences (eds. L. M. Ricciardi, (1028), 171.  doi: 10.1063/1.2965085.  Google Scholar

[6]

G, Esposito, V. Giorno, A. G. Nobile, L. M. Ricciardi and C. Valerio, Neuronal modeling in the presence of random refractoriness,, Sci. Math. Jpn., 64 (2006), 1.   Google Scholar

[7]

G. L. Gerstein and B. Mandelbrot, Random walk models for the spike activity of a single neuron,, Biophys. J., 4 (1964), 41.  doi: 10.1016/S0006-3495(64)86768-0.  Google Scholar

[8]

V. Giorno, A. G. Nobile and L. M. Ricciardi, On the asymptotic behaviour of first-passage-time densities for one-dimensional diffusion processes and varying boundaries,, Adv. in Appl. Probab., 22 (1990), 883.  doi: 10.2307/1427567.  Google Scholar

[9]

M. T. Giraudo and L. Sacerdote, Jump-diffusion processes as models for neuronal activity,, BioSystems, 40 (1997), 75.  doi: 10.1016/0303-2647(96)01632-2.  Google Scholar

[10]

P. Lansky and L. Sacerdote, The Ornstein-Uhlenbeck neuronal model with signal-dependent noise,, Physics Letters A, 285 (2001), 132.  doi: 10.1016/S0375-9601(01)00340-1.  Google Scholar

[11]

P. Lansky, P. Sanda and J. He, The parameters of the stochastic leaky integrate-and-fire neuronal model,, J. Comput. Neurosci., 21 (2006), 211.  doi: 10.1007/s10827-006-8527-6.  Google Scholar

[12]

L. M. Ricciardi and F. Esposito, On some distribution functions for non-linear switching elements with finite dead time,, Kybernetik, 3 (1966), 148.  doi: 10.1007/BF00288925.  Google Scholar

[13]

L. M. Ricciardi, A. Di Crescenzo, V. Giorno and A. G. Nobile, An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling,, Math. Japon., 50 (1999), 247.   Google Scholar

[14]

L. M. Ricciardi and L. Sacerdote, The Ornstein-Uhlenbeck process as a model for neuronal activity,, Biol. Cyb., 35 (1979), 1.  doi: 10.1007/BF01845839.  Google Scholar

[15]

M. C. Teich, L. Matin and B. I. Cantor, Refractoriness in the maintained discharge of the cat's retinal ganglion cell,, J. Opt. Soc. Am., 68 (1978), 386.  doi: 10.1364/JOSA.68.000386.  Google Scholar

show all references

References:
[1]

A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities,, Adv. Appl. Prob., 19 (1987), 784.  doi: 10.2307/1427102.  Google Scholar

[2]

A. Buonocore, L. Caputo and E. Pirozzi, On the evaluation of firing densities for periodically driven neuron models,, Math. Biosci., 214 (2008), 122.  doi: 10.1016/j.mbs.2008.02.003.  Google Scholar

[3]

R. M. Capocelli and L. M. Ricciardi, Diffusion approximation and first passage time problem for a model neuron,, Kybernetik (Berlin), 8 (1971), 214.  doi: 10.1007/BF00288750.  Google Scholar

[4]

S. Ditlevsen and P. Lansky, Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model,, Phys. Rev. E (3), 71 (2005).  doi: 10.1103/PhysRevE.71.011907.  Google Scholar

[5]

S. Ditlevsen and P. Lansky, Comparison of statistical methods for estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model from first-passage times data,, in Collective Dynamics: Topics on Competition and Cooperation in the Biosciences (eds. L. M. Ricciardi, (1028), 171.  doi: 10.1063/1.2965085.  Google Scholar

[6]

G, Esposito, V. Giorno, A. G. Nobile, L. M. Ricciardi and C. Valerio, Neuronal modeling in the presence of random refractoriness,, Sci. Math. Jpn., 64 (2006), 1.   Google Scholar

[7]

G. L. Gerstein and B. Mandelbrot, Random walk models for the spike activity of a single neuron,, Biophys. J., 4 (1964), 41.  doi: 10.1016/S0006-3495(64)86768-0.  Google Scholar

[8]

V. Giorno, A. G. Nobile and L. M. Ricciardi, On the asymptotic behaviour of first-passage-time densities for one-dimensional diffusion processes and varying boundaries,, Adv. in Appl. Probab., 22 (1990), 883.  doi: 10.2307/1427567.  Google Scholar

[9]

M. T. Giraudo and L. Sacerdote, Jump-diffusion processes as models for neuronal activity,, BioSystems, 40 (1997), 75.  doi: 10.1016/0303-2647(96)01632-2.  Google Scholar

[10]

P. Lansky and L. Sacerdote, The Ornstein-Uhlenbeck neuronal model with signal-dependent noise,, Physics Letters A, 285 (2001), 132.  doi: 10.1016/S0375-9601(01)00340-1.  Google Scholar

[11]

P. Lansky, P. Sanda and J. He, The parameters of the stochastic leaky integrate-and-fire neuronal model,, J. Comput. Neurosci., 21 (2006), 211.  doi: 10.1007/s10827-006-8527-6.  Google Scholar

[12]

L. M. Ricciardi and F. Esposito, On some distribution functions for non-linear switching elements with finite dead time,, Kybernetik, 3 (1966), 148.  doi: 10.1007/BF00288925.  Google Scholar

[13]

L. M. Ricciardi, A. Di Crescenzo, V. Giorno and A. G. Nobile, An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling,, Math. Japon., 50 (1999), 247.   Google Scholar

[14]

L. M. Ricciardi and L. Sacerdote, The Ornstein-Uhlenbeck process as a model for neuronal activity,, Biol. Cyb., 35 (1979), 1.  doi: 10.1007/BF01845839.  Google Scholar

[15]

M. C. Teich, L. Matin and B. I. Cantor, Refractoriness in the maintained discharge of the cat's retinal ganglion cell,, J. Opt. Soc. Am., 68 (1978), 386.  doi: 10.1364/JOSA.68.000386.  Google Scholar

[1]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[2]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[3]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[6]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[7]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[11]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[17]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[18]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]