- Previous Article
- MBE Home
- This Issue
-
Next Article
Demographic modeling of transient amplifying cell population growth
Cooperative behavior in a jump diffusion model for a simple network of spiking neurons
1. | Department of Mathematics "G. Peano", University of Torino, Via Carlo Alberto 10, 10123 Torino, Italy, Italy |
2. | Grenoble Institute of Neuroscience Inserm UMRS 836, University Joseph Fourier Grenoble, France |
References:
[1] |
L. Alili, P. Patie and J. L. Pedersen, Representations of the first hitting time density of an Ornstein-Uhlenbeck process,, Stoch. Models, 21 (2005), 967.
doi: 10.1080/15326340500294702. |
[2] |
P. Baldi and L. Caramellino, Asymptotics of hitting probabilities for general one-dimensional pinned diffusions,, Ann. Appl. Probab., 12 (2002), 1071.
doi: 10.1214/aoap/1031863181. |
[3] |
A. R. Bulsara, T. C. Elston, C. R. Doering, S. B. Lowen and K. Lindenberg, Cooperative behavior in periodically driven noisy integrate-fire models of neuronal dynamics,, Phys. Rev. E, 53 (1996), 3958.
doi: 10.1103/PhysRevE.53.3958. |
[4] |
A. R. Bulsara, S. B. Lowen and C. D. Rees, Cooperative behavior in the periodically modulated Wiener process: Noise-induced complexity in a model neutron,, Phys. Rev. E, 49 (1994), 4989.
doi: 10.1103/PhysRevE.49.4989. |
[5] |
W. H. Calvin and C. F. Stevens, Synaptic noise and other sources of randomness in motoneuron interspike intervals,, J. Neurophysiol., 31 (1968), 574. Google Scholar |
[6] |
A. Capurro, K. Pakdaman, T. Nomura and S. Sato, Aperiodic stochastic resonance with correlated noise,, Phys. Rev. E, 58 (1998), 4820.
doi: 10.1103/PhysRevE.58.4820. |
[7] |
G. A. Cecchi, M. Sigman, J.-M. Alonso, L. Martínez, D. R. Chialvo and M. O. Magnasco, Noise in neurons is message dependent,, Proceedings of the National Academy of Sciences, 97 (2000), 5557.
doi: 10.1073/pnas.100113597. |
[8] |
J. J. Collins, C. C. Chow, A. C. Capela and T. T. Imhoff, Aperiodic stochastic resonance,, Phys. Rev. E, 54 (1996), 5575.
doi: 10.1103/PhysRevE.54.5575. |
[9] |
J. J. Collins, C. C. Chow and T. T. Imhoff, Aperiodic stochastic resonance in excitable systems,, Phys. Rev. E, 52 (1995).
doi: 10.1103/PhysRevE.52.R3321. |
[10] |
I. Duguid, T. Branco, M. London, P. Chadderton and M. Häusser, Tonic inhibition enhances fidelity of sensory information transmission in the cerebellar cortex,, The Journal of Neuroscience, 32 (2012), 11132.
doi: 10.1523/JNEUROSCI.0460-12.2012. |
[11] |
M. Gernert, M. Bennay, M. Fedrowitz, J. H. Rehders and A. Richter, Altered discharge pattern of basal ganglia output neurons in an animal model of idiopathic dystonia,, J. Neurosci., 22 (2002), 7244. Google Scholar |
[12] |
M. T. Giraudo and L. Sacerdote, An improved technique for the simulation of first passage times for diffusion processes,, Comm. Statist. Simulation Comput., 28 (1999), 1135.
doi: 10.1080/03610919908813596. |
[13] |
L. L. Gollo, C. R. Mirasso and A. E. P. Villa, Dynamic control for synchronization of separated cortical areas through thalamic relay,, NeuroImage, 52 (2010), 947.
doi: 10.1016/j.neuroimage.2009.11.058. |
[14] |
M. Häusser and B. A. Clark, Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration,, Neuron, 19 (1997), 665. Google Scholar |
[15] |
E. R. Kandel, J. H. Schwartz and T. M. Jessell, Principles of Neural Science,, Vol. 4, (2000). Google Scholar |
[16] |
P. Lánský, On approximations of Stein's neuronal model,, J. Theor. Biol., 107 (1984), 631. Google Scholar |
[17] |
M. W. Levine and J. M. Shefner, A model for the variability of interspike intervals during sustained firing of a retinal neuron,, Biophysical Journal, 19 (1977), 241.
doi: 10.1016/S0006-3495(77)85584-7. |
[18] |
Y. Loewenstein, S. Mahon, P. Chadderton, K. Kitamura, H. Sompolinsky, Y. Yarom and M. Häusser, Bistability of cerebellar Purkinje cells modulated by sensory stimulation,, Nature Neuroscience, 8 (2005), 202.
doi: 10.1038/nn1393. |
[19] |
A. Longtin, Stochastic resonance in neuron models,, Journal of Statistical Physics, 70 (1993), 309.
doi: 10.1007/BF01053970. |
[20] |
A. Longtin, A. Bulsara and F. Moss, Time interval sequences in the bistable systems and the noise-induced transmission of information by sensory neurons,, Phys. Rev. Lett., 67 (1991), 656.
doi: 10.1103/PhysRevLett.67.656. |
[21] |
M. Musila and P. Lánský, Generalized Stein's model for anatomically complex neurons,, Biosystems, 25 (1991), 179.
doi: 10.1016/0303-2647(91)90004-5. |
[22] |
A. G. Nobile, L. M. Ricciardi and L. Sacerdote, Exponential trends of Ornstein-Uhlenbeck first-passage-time densities,, J. Appl. Probab., 22 (1985), 360.
doi: 10.2307/3213779. |
[23] |
L. M. Ricciardi, Diffusion approximation for a multi-input model neuron,, Biological Cybernetics, 24 (1976), 237.
doi: 10.1007/BF00335984. |
[24] |
L. Sacerdote and R. Sirovich, Multimodality of the interspike interval distribution in a simple jump-diffusion model,, Sci. Math. Jpn., 58 (2003), 307.
|
[25] |
J. P. Segundo, J. F. Vibert, K. Pakdaman, M. Stiber and O. Diez-Martinez, Noise and the neurosciences: A long history, a recent revival and some theory,, Origins: Brain and Self Organization, (1994), 299. Google Scholar |
[26] |
T. Shimokawa, K. Pakdaman and S. Sato, Time-scale matching in the response of a leaky integrate-and-fire neuron model to periodic stimulus with additive noise,, Phys. Rev. E, 59 (1999), 3427.
doi: 10.1103/PhysRevE.59.3427. |
[27] |
H. C. Tuckwell, Introduction to Theoretical Neurobiology: Volume 2, Nonlinear and Stochastic Theories,, Cambridge University Press, (2005). Google Scholar |
[28] |
C. Van Vreeswijk, L. F. Abbott and G. B. Ermentrout, When inhibition not excitation synchronizes neural firing,, Journal of Computational Neuroscience, 1 (1994), 313. Google Scholar |
[29] |
F. Wan and H. C. Tuckwell, Neuronal firing and input variability,, J. Theor. Neurobiol., 1 (1982), 197. Google Scholar |
[30] |
K. Wiesenfeld and F. Moss, Stochastic resonance and the benefits of noise: From ice ages to crayfish and squids,, Nature, 373 (1995), 33.
doi: 10.1038/373033a0. |
[31] |
F. Wörgötter, E. Nelle, B. Li and K. Funke, The influence of corticofugal feedback on the temporal structure of visual responses of cat thalamic relay cells,, J. Physiol., 509 (1998), 797.
doi: 10.1111/j.1469-7793.1998.797bm.x. |
show all references
References:
[1] |
L. Alili, P. Patie and J. L. Pedersen, Representations of the first hitting time density of an Ornstein-Uhlenbeck process,, Stoch. Models, 21 (2005), 967.
doi: 10.1080/15326340500294702. |
[2] |
P. Baldi and L. Caramellino, Asymptotics of hitting probabilities for general one-dimensional pinned diffusions,, Ann. Appl. Probab., 12 (2002), 1071.
doi: 10.1214/aoap/1031863181. |
[3] |
A. R. Bulsara, T. C. Elston, C. R. Doering, S. B. Lowen and K. Lindenberg, Cooperative behavior in periodically driven noisy integrate-fire models of neuronal dynamics,, Phys. Rev. E, 53 (1996), 3958.
doi: 10.1103/PhysRevE.53.3958. |
[4] |
A. R. Bulsara, S. B. Lowen and C. D. Rees, Cooperative behavior in the periodically modulated Wiener process: Noise-induced complexity in a model neutron,, Phys. Rev. E, 49 (1994), 4989.
doi: 10.1103/PhysRevE.49.4989. |
[5] |
W. H. Calvin and C. F. Stevens, Synaptic noise and other sources of randomness in motoneuron interspike intervals,, J. Neurophysiol., 31 (1968), 574. Google Scholar |
[6] |
A. Capurro, K. Pakdaman, T. Nomura and S. Sato, Aperiodic stochastic resonance with correlated noise,, Phys. Rev. E, 58 (1998), 4820.
doi: 10.1103/PhysRevE.58.4820. |
[7] |
G. A. Cecchi, M. Sigman, J.-M. Alonso, L. Martínez, D. R. Chialvo and M. O. Magnasco, Noise in neurons is message dependent,, Proceedings of the National Academy of Sciences, 97 (2000), 5557.
doi: 10.1073/pnas.100113597. |
[8] |
J. J. Collins, C. C. Chow, A. C. Capela and T. T. Imhoff, Aperiodic stochastic resonance,, Phys. Rev. E, 54 (1996), 5575.
doi: 10.1103/PhysRevE.54.5575. |
[9] |
J. J. Collins, C. C. Chow and T. T. Imhoff, Aperiodic stochastic resonance in excitable systems,, Phys. Rev. E, 52 (1995).
doi: 10.1103/PhysRevE.52.R3321. |
[10] |
I. Duguid, T. Branco, M. London, P. Chadderton and M. Häusser, Tonic inhibition enhances fidelity of sensory information transmission in the cerebellar cortex,, The Journal of Neuroscience, 32 (2012), 11132.
doi: 10.1523/JNEUROSCI.0460-12.2012. |
[11] |
M. Gernert, M. Bennay, M. Fedrowitz, J. H. Rehders and A. Richter, Altered discharge pattern of basal ganglia output neurons in an animal model of idiopathic dystonia,, J. Neurosci., 22 (2002), 7244. Google Scholar |
[12] |
M. T. Giraudo and L. Sacerdote, An improved technique for the simulation of first passage times for diffusion processes,, Comm. Statist. Simulation Comput., 28 (1999), 1135.
doi: 10.1080/03610919908813596. |
[13] |
L. L. Gollo, C. R. Mirasso and A. E. P. Villa, Dynamic control for synchronization of separated cortical areas through thalamic relay,, NeuroImage, 52 (2010), 947.
doi: 10.1016/j.neuroimage.2009.11.058. |
[14] |
M. Häusser and B. A. Clark, Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration,, Neuron, 19 (1997), 665. Google Scholar |
[15] |
E. R. Kandel, J. H. Schwartz and T. M. Jessell, Principles of Neural Science,, Vol. 4, (2000). Google Scholar |
[16] |
P. Lánský, On approximations of Stein's neuronal model,, J. Theor. Biol., 107 (1984), 631. Google Scholar |
[17] |
M. W. Levine and J. M. Shefner, A model for the variability of interspike intervals during sustained firing of a retinal neuron,, Biophysical Journal, 19 (1977), 241.
doi: 10.1016/S0006-3495(77)85584-7. |
[18] |
Y. Loewenstein, S. Mahon, P. Chadderton, K. Kitamura, H. Sompolinsky, Y. Yarom and M. Häusser, Bistability of cerebellar Purkinje cells modulated by sensory stimulation,, Nature Neuroscience, 8 (2005), 202.
doi: 10.1038/nn1393. |
[19] |
A. Longtin, Stochastic resonance in neuron models,, Journal of Statistical Physics, 70 (1993), 309.
doi: 10.1007/BF01053970. |
[20] |
A. Longtin, A. Bulsara and F. Moss, Time interval sequences in the bistable systems and the noise-induced transmission of information by sensory neurons,, Phys. Rev. Lett., 67 (1991), 656.
doi: 10.1103/PhysRevLett.67.656. |
[21] |
M. Musila and P. Lánský, Generalized Stein's model for anatomically complex neurons,, Biosystems, 25 (1991), 179.
doi: 10.1016/0303-2647(91)90004-5. |
[22] |
A. G. Nobile, L. M. Ricciardi and L. Sacerdote, Exponential trends of Ornstein-Uhlenbeck first-passage-time densities,, J. Appl. Probab., 22 (1985), 360.
doi: 10.2307/3213779. |
[23] |
L. M. Ricciardi, Diffusion approximation for a multi-input model neuron,, Biological Cybernetics, 24 (1976), 237.
doi: 10.1007/BF00335984. |
[24] |
L. Sacerdote and R. Sirovich, Multimodality of the interspike interval distribution in a simple jump-diffusion model,, Sci. Math. Jpn., 58 (2003), 307.
|
[25] |
J. P. Segundo, J. F. Vibert, K. Pakdaman, M. Stiber and O. Diez-Martinez, Noise and the neurosciences: A long history, a recent revival and some theory,, Origins: Brain and Self Organization, (1994), 299. Google Scholar |
[26] |
T. Shimokawa, K. Pakdaman and S. Sato, Time-scale matching in the response of a leaky integrate-and-fire neuron model to periodic stimulus with additive noise,, Phys. Rev. E, 59 (1999), 3427.
doi: 10.1103/PhysRevE.59.3427. |
[27] |
H. C. Tuckwell, Introduction to Theoretical Neurobiology: Volume 2, Nonlinear and Stochastic Theories,, Cambridge University Press, (2005). Google Scholar |
[28] |
C. Van Vreeswijk, L. F. Abbott and G. B. Ermentrout, When inhibition not excitation synchronizes neural firing,, Journal of Computational Neuroscience, 1 (1994), 313. Google Scholar |
[29] |
F. Wan and H. C. Tuckwell, Neuronal firing and input variability,, J. Theor. Neurobiol., 1 (1982), 197. Google Scholar |
[30] |
K. Wiesenfeld and F. Moss, Stochastic resonance and the benefits of noise: From ice ages to crayfish and squids,, Nature, 373 (1995), 33.
doi: 10.1038/373033a0. |
[31] |
F. Wörgötter, E. Nelle, B. Li and K. Funke, The influence of corticofugal feedback on the temporal structure of visual responses of cat thalamic relay cells,, J. Physiol., 509 (1998), 797.
doi: 10.1111/j.1469-7793.1998.797bm.x. |
[1] |
Chang-Yuan Cheng, Shyan-Shiou Chen, Rui-Hua Chen. Delay-induced spiking dynamics in integrate-and-fire neurons. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020363 |
[2] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[3] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[4] |
Chuan Ding, Da-Hai Li. Angel capitalists exit decisions under information asymmetry: IPO or acquisitions. Journal of Industrial & Management Optimization, 2021, 17 (1) : 369-392. doi: 10.3934/jimo.2019116 |
[5] |
Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144 |
[6] |
Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047 |
[7] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[8] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[9] |
Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149 |
[10] |
Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047 |
[11] |
Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041 |
[12] |
Yueh-Cheng Kuo, Huan-Chang Cheng, Jhih-You Syu, Shih-Feng Shieh. On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020358 |
[13] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[14] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021012 |
[15] |
Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323 |
[16] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[17] |
Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066 |
[18] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[19] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[20] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]