\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Model validation for a noninvasive arterial stenosis detection problem

Abstract Related Papers Cited by
  • A current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use one-dimensional shear wave experimental data from novel acoustic phantoms to validate a corresponding viscoelastic mathematical model. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.
    Mathematics Subject Classification: 62F12, 62F40, 65M32, 74D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Ainsworth, P. Monk and W. Muniz, Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation, Journal of Scientific Computing, 27 (2006), 5-40.doi: 10.1007/s10915-005-9044-x.

    [2]

    M. Akay, Noninvasive Detection of Coronary Artery Disease Using Advanced Signal Processing Methods, PhD Dissertation, Rutgers University, Piscataway, NJ, 1990.

    [3]

    M. Akay, Y. Akay, W. Welkowitz, J. Semmlow and J. Kostis, Application of adaptive filters to noninvasive acoustical detection of coronary occlusions before and after angioplasty, IEEE Trans. on Biomed. Eng., 39 (1992), 176-184.doi: 10.1109/10.121649.

    [4]

    M. Akay, Y. Akay, W. Welkowitz, J. Semmlow and J. Kostis, Noninvasive detection of coronary artery disease using neural networks, Proc. IEEE Eng. in Med. & Biol. Soc., (1991), 1434-1435.doi: 10.1109/IEMBS.1991.684531.

    [5]

    M. Akay, M. Bauer, J. Semmlow, W. Welkowitz and J. Kostis, Analysis of diastolic heart sounds before and after angioplasty, Proc. IEEE Eng. in Med. & Biol. Soc., (1988), 257-260.doi: 10.1109/IEMBS.1988.94505.

    [6]

    M. Akay, W. Welkowitz, J. Semmlow and J. Kostis, Application of the ARMA method to acoustic detection of coronary artery disease, Med. & Biol. Eng. & Comput., 29 (1991), 365-372.doi: 10.1007/BF02441656.

    [7]

    H. T. Banks, A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering, CRC Press, Boca Raton London New York, 2012.doi: 10.1201/b12209.

    [8]

    H. T. Banks, J. H. Barnes, A. Eberhardt, H. Tran and S. Wynne, Modeling and computation of propagating waves from coronary stenoses, Comp. and Appl. Math., 21 (2002), 767-788.

    [9]

    H. T. Banks and K. Bihari, Modelling and estimating uncertainty in parameter estimation, Inverse Problems, 17 (2001), 95-111.doi: 10.1088/0266-5611/17/1/308.

    [10]

    H. T. Banks and B. G. Fitzpatrick, Inverse problems for distributed systems: Statistical tests and ANOVA, Proc. International Symp. on Math. Approaches to Envir. and Ecol. Problems, Springer Lecture Notes in Biomath., LCDS/CCS Rep. 88-16, July, 1988, Brown University; 81 (1989), 262-273.doi: 10.1007/978-3-642-46693-9_18.

    [11]

    H. T. Banks, K. Holm and D. Robbins, Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. Bootstrapping, Math. and Comp. Modelling, CRSC-TR09-13, N.C. State University, 2009; Revised 2010; 52 (2010), 1610-1625.doi: 10.1016/j.mcm.2010.06.026.

    [12]

    H. T. Banks, S. Hu and Z. R. Kenz, A brief review of elasticity and viscoelasticity for solids, Adv. in Applied Math. and Mech., 3 (2011), 1-51.

    [13]

    H. T. Banks, S. Hu, Z. R. Kenz, C. Kruse, S. Shaw, J. R. Whiteman, M. P. Brewin, S. E. Greenwald and M. J. Birch, Material parameter estimation and hypothesis testing on a 1D viscoelastic stenosis model: Methodology, J. Inverse and Ill-Posed Problems, CRSC-TR12-09, N.C. State University, (2012); 21 (2013), 25-57.doi: 10.1515/jip-2012-0081.

    [14]

    H. T. Banks, S. Hu, Z. R. Kenz, C. Kruse, S. Shaw, J. R. Whiteman, M. P. Brewin, S. E. Greenwald and M. J. Birch, Model validation for a noninvasive arterial stenosis detection problem, CRSC-TR12-22, N.C. State University, (2012).

    [15]

    H. T. Banks, Z. R. Kenz and W. C. Thompson, A review of selected techniques in inverse problem nonparametric probability distribution estimation, J. of Inverse and Ill-Posed Problems, 20 (2012), 429-460.doi: 10.1515/jip-2012-0037.

    [16]

    H. T. Banks, Z. R. Kenz and W. C. Thompson, An extension of RSS-based model comparison tests for weighted least squares, CRSC-TR12-18, N. C. State University, Raleigh, NC, August, 2012; Intl. J. Pure and Appl. Math., 79 (2012), 155-183.

    [17]

    H. T. Banks and N. Luke, Modeling of propagating shear waves in biotissue employing an internal variable approach to dissipation, Communication in Computational Physics, 3 (2008), 603-640.

    [18]

    H. T. Banks, N. Medhin and G. Pinter, Multiscale considerations in modeling of nonlinear elastomers, Inter. J. for Comp. Methods in Eng. Science and Mechanics, 8 (2007), 53-62.doi: 10.1080/15502280601149346.

    [19]

    H. T. Banks, N. Medhin and G. Pinter, Nonlinear reptation in molecular based hysteresis models for polymers, Quarterly of Applied Math., 62 (2004), 767-779.

    [20]

    H. T. Banks and G. A. Pinter, A probabilistic multiscale approach to hysteresis in shear wave propagation in biotissue, Multiscale Modeling and Simulation, 3 (2005), 395-412.doi: 10.1137/040603693.

    [21]

    H. T. Banks and J. R. Samuels, Jr, Detection of cardiac occlusions using viscoelastic wave propagation, Advances in Appl. Math. and Mech., 1 (2009), 1-28.

    [22]

    H. T. Banks and H. T. Tran, Mathematical and Experimental Modeling of Physical and Biological Processes, CRC Press, Boca Raton, FL, 2009.

    [23]

    J. D. De Basabe, M. K. Sen and M. F. Wheeler, The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion, Geophys J. Int., 175 (2008), 83-93.

    [24]

    A. O. Borisyuk, Noise field in the human chest due to turbulent flow in a larger blood vessel, Flow, Turbulence and Combustion, 61 (1999), 269-284.doi: 10.1016/S0889-9746(03)00056-2.

    [25]

    A. O. Borisyuk, Experimental study of voise produced by steady flow through a simulated vascular stenosis, J. of Sound and Vibration, 256 (2002), 475-498.

    [26]

    A. O. Borisyuk, Model study of noise field in the human chest due to turbulent flow in a larger blood vessel, J. of Fluids and Structures, 17 (2003), 1095-1110.doi: 10.1016/S0889-9746(03)00056-2.

    [27]

    M. P. Brewin, M. J. Birch and S. E. Greenwald, et al., Characterization of the uniaxial elastic properties of an agar-based tissue mimicking material, in preparation.

    [28]

    S. Catheline, J.-L. Gennisson, G. Delon, M. Fink, R. Sinkus, S. Abouelkaram and J. Culioli, Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach, J. Acoust. Soc. Am, 116 (2004), 3734-3741.doi: 10.1121/1.1815075.

    [29]

    S. Catheline, L. Sandrin, J.-L. Gennisson, M. Tanter and M. Fink, Ultrasound-based noninvasive shear elasticity probe for soft tissues, IEEE Ultrasonics Symposium, 2 (2000), 1799-1801.doi: 10.1109/ULTSYM.2000.921672.

    [30]

    S. Chen, M. Fatemi and J. Greenleaf, Quantifying elasticity and viscosity from measurement of shear wave speed dispersion, J. Acoust. Soc. Am., 115 (2004), 2781-2785.doi: 10.1121/1.1739480.

    [31]

    S. Chen, M. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao and J. Greenleaf, Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity, IEEE Trans. on Ultrason., Ferroelectrics, and Freq. Contr., 56 (2009), 55-62.

    [32]

    T. Cheng, Diastolic murmur caused by coronary artery stenosis, Ann. Int. Med, 72 (1970), 543.doi: 10.7326/0003-4819-72-4-543.

    [33]

    T. Deffieux, G. Montaldo and M. Tanter, Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity, IEEE Trans. on Medical Imag., 28 (2009), 313-322.doi: 10.1109/TMI.2008.925077.

    [34]

    B. El-Asir, L. Khadra, A. Al-Abbasi and M. Mohammed, Time-frequency analysis of heart sounds, Proc. IEE TENCON, (1996), 553-558.doi: 10.1109/TENCON.1996.608401.

    [35]

    Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York, 1993.doi: 10.1115/1.3138285.

    [36]

    A. Góral-Wójcicka, W. Borgieł, Z. Małota and Z. Nawrat, On the acoustic phenomena produced by turbulence in the flowing blood, Polish J. Med. Phys. & Eng., 8 (2002), 29-35.

    [37]

    A. Karpiouk, S. Alglyamov, Y. Illinskii, E. Zabolotskaya and S. Emelianov, Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity, IEEE Trans. on Ultrason., Ferroelectrics, and Freq. Contr., 56 (2009), 2380-2387.doi: 10.1109/TUFFC.2009.1326.

    [38]

    C. Kruse, S. Shaw and J. R. Whiteman, High order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling, in preparation.

    [39]

    T. S. Lee, W. Liao and H. T. Low, Numerical simulation of turbulent flow through series stenoses, Inter. J. for Numer. Methods in Fluids, 42 (2003), 717-740.doi: 10.1002/fld.550.

    [40]

    S. Levinson, M. Shinagawa and T. Sato, Sonoelastic determination of human skeletal muscle elasticity, J. Biomechanics, 28 (1995), 1145-1154.doi: 10.1016/0021-9290(94)00173-2.

    [41]

    S. Lundin, R. Metcalf and C. Hartley, Effects of severity and eccentricity of carotid stenosis on pulsatile blood flow, Proc. Joint EMBS/BMES, (2003), 1311-1312doi: 10.1109/IEMBS.2002.1106403.

    [42]

    N. Luke, Modeling Shear Wave Propagation in Biotissue: An Internal Variable Approach to Dissipation, PhD Dissertation, N.C. State University, Raleigh, 2006.

    [43]

    S. E. Nissen, Application of intravascular ultrasound to characterize coronary artery disease and assess the progression or regression of atherosclerosis, Am. J. Cardiol., 89 (2002), 24B-31B.doi: 10.1016/S0002-9149(02)02217-8.

    [44]

    S. E. Nissen and P. Yock, Intravascular ultrasound: Novel pathophysiological insights and current clinical applications, Circulation, 103 (2001), 604-616.doi: 10.1161/01.CIR.103.4.604.

    [45]

    N. Owsley and A. Hull, Beamformed nearfield imaging of a simulated coronary artery containing a stenosis, IEEE Trans. Med. Imaging, 17 (1998), 900-909.doi: 10.1109/42.746623.

    [46]

    N. Owsley, A. J. Hull, M. H. Ahmed and J. Kassal, A proof of concept experiment for the detection of occluded coronary arteries using array sensor technology, Engr. in Medicine and Biol. Society, IEEE 17th Annual Conf., 1 (1995), 145-146.doi: 10.1109/IEMBS.1995.575042.

    [47]

    V. Padmanabhan and J. Semmlow, A dedicated system for acoustic detection of coronary artery disease, Proc. Eng. in Med. & Biol. Soc., (1992), 457-458.doi: 10.1109/IEMBS.1992.595658.

    [48]

    T. Pedley, Mathematical modelling of arterial fluid dynamics, J. of Eng. Math., 47 (2003), 419-444.doi: 10.1023/B:ENGI.0000007978.33352.59.

    [49]

    C. Prado, S. Ramos, J. Elias, Jr., and M. Rossi, Turbulent blood flow plays an essential localizing role in the development of atherosclerotic lesions in experimentally induced hypercholesterolaemia in rats, Int. J. Exp. Path., 89 (2008), 72-80.doi: 10.1111/j.1365-2613.2007.00564.x.

    [50]

    J. R. Samuels, Jr., Inverse Problems and Post Analysis Techniques for a Stenosis-Driven Acoustic Wave Propagation Model, PhD Dissertation, N.C. State University, Raleigh, 2008.

    [51]

    L. Sandrin, S. Catheline, M. Tanter, X. Hennequin and M. Fink, Time-resolved pulsed elastography with ultrafast ultrasonic imaging, Ultrasonic Imaging, 21 (1999), 259-272.

    [52]

    J. Sangster and C. Oakley, Diastolic murmur of coronary artery stenosis, Brit. Heart J., 35 (1973), 840.doi: 10.1136/hrt.35.8.840.

    [53]

    J. Semmlow and K. Rahalkar, Acoustic detection of coronary artery disease, Annu. Rev. Biomed. Eng, 9 (2007), 449-469.doi: 10.1146/annurev.bioeng.9.060906.151840.

    [54]

    J. Semmlow, W. Welkowitz, J. Kostis and J. Mackenzie, Coronary artery disease-correlates between diastolic auditory characteristics and coronary artery stenoses, IEEE Trans. on Biomed. Eng., 30 (1983), 136-139.doi: 10.1109/TBME.1983.325211.

    [55]

    C. Taylor, T. Hughes and C. Zarins, Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: Relevance to atherosclerosis, Annals of Biomed. Eng., 26 (1998), 975-987.doi: 10.1114/1.140.

    [56]

    J. Verburg and E. van Vollenhoven, Phonocardiography: Physical and technical aspects and clinical uses, in Noninvasive Physiological Measurements (ed. P Rolfe), Academic Press, London (1979), 213-259.

    [57]

    H. Vermarien and E. van Vollenhoven, The recording of heart vibrations: A problem of vibration measurement on soft tissue, Med. & Biol. Eng. & Comput., 22 (1984), 168-178.doi: 10.1007/BF02446821.

    [58]

    A. Voss, A. Mix and T. Hübner, Diagnosing aortic valve stenosis by parameter extraction of heart sound signals, Annals of Biomed. Eng., 33 (2005), 1167-1174.doi: 10.1007/s10439-005-5347-x.

    [59]

    J.-Z. Wang, B. Tie, W. Welkowitz, J. Semmlow and J. Kostis, Modeling sound generation in stenosed coronary arteries, IEEE Trans. on Biomed. Eng., 37 (1990), 1087-1094.doi: 10.1109/10.61034.

    [60]

    J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.

    [61]

    M. Zia, B. Griffel, V. Fridman, C. Saponieri and J. Semmlow, Noise detection in heart sound recordings, Conf. Proc. IEEE Eng. Med. Biol. Soc., (2011), 5880-5883.doi: 10.1109/IEMBS.2011.6091454.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(118) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return