-
Previous Article
A metapopulation model for sylvatic T. cruzi transmission with vector migration
- MBE Home
- This Issue
-
Next Article
Model validation for a noninvasive arterial stenosis detection problem
The global stability of an SIRS model with infection age
1. | Department of Applied Mathematics, Yuncheng University, Yuncheng 044000, Shanxi, China, China, China |
References:
[1] |
À. Calsina, J. M. Palmada and J. Ripoll, Optimal latent period in a bacteriophage population model structured by infection-age, Math. Models Methods Appl. Sci., 21 (2011), 693-718.
doi: 10.1142/S0218202511005180. |
[2] |
C. Castillo-Chavez et al., Epidemiological models with age structure, proportionate mixing, and cross-immunity, J. Math. Bioi., 27 (1989), 233-258.
doi: 10.1007/BF00275810. |
[3] |
B. Buonomo and S. Rionero, On the Lyapunov stability for SIRS epidemic models with generalized nonlinear incidence rate, Appl. Math. Comput., 217 (2010), 4010-4016.
doi: 10.1016/j.amc.2010.10.007. |
[4] |
A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured epidemic model with external supplies, Nonlineaity, 24 (2011), 2891-2911.
doi: 10.1088/0951-7715/24/10/012. |
[5] |
Z. Feng, M. Iannelli and F. A. Milner, A two-strain tuberculosis model with age of infection, SIAM. J. Appl. Math., 62 (2002), 1634-1656.
doi: 10.1137/S003613990038205X. |
[6] |
D. F. Francis et al., Infection of chimpanzees with lymphadenopathy-associated virus, Lancet, 2 (1984), 1276-1277. |
[7] |
H. W. Hethcote and J. A. Yorke, Gonorrhea Transmission Dynamics and Control, Springer-Verlag, Berlin, 1984. |
[8] |
W. M. Hirsch, H. Hanisch and J.-P. Gabriel, Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior, Comm. Pure Appl. Math., 38 (1985), 733-753.
doi: 10.1002/cpa.3160380607. |
[9] |
J. M. Hyman and J. Li, Infection-age structured epidemic models with behavior change or treatment, J. Biol. Dyn., 1 (2007), 109-131.
doi: 10.1080/17513750601040383. |
[10] |
H. Inaba and H. Sekine, A mathematical model for Chagas disease with infection-age-dependent infectivity, Math. Biosci., 190 (2004), 39-69.
doi: 10.1016/j.mbs.2004.02.004. |
[11] |
A. Lahrouz et al., Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination, Appl. Math. Comput., 218 (2012), 6519-6525.
doi: 10.1016/j.amc.2011.12.024. |
[12] |
J. M. A. Lange et al., Persistent HIV antigenaemia and decline of HIV core antibodies associated with transition to AIDS, British Medical J., 293 (1986), 1459-1462. |
[13] |
J. Liu and Y. Zhou, Global stability of an SIRS epidemic model with trasport-related infection, Chaos Solitons Fractals, 40 (2009), 145-158.
doi: 10.1016/j.chaos.2007.07.047. |
[14] |
Z. Liu, P. Magal and S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z. Angew. Math. Phys., 62 (2011), 191-222.
doi: 10.1007/s00033-010-0088-x. |
[15] |
P. Magal, Compact attrators for time-periodic age-structured population models, Electron. J. Differntial Equations, 2001 (2001), 35 pp. |
[16] |
P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov fucntional and global asymptoticalc stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.
doi: 10.1080/00036810903208122. |
[17] |
P. Magal and X.-Q. Zhao, Global attractors in uniformly persistent dynamical systems, SIAM J. Mah. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173. |
[18] |
M. Martcheva and S. S. Pilyugin, The role of coinfection in multidisease dynamics, SIAM J. Appl. Math., 66 (2006), 843-872.
doi: 10.1137/040619272. |
[19] |
C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603-610.
doi: 10.3934/mbe.2009.6.603. |
[20] |
C. Pedersen et al., Temporal relation of antigenaemia and loss of antibodies to core core antigens to development of clinical disease in HIV infection, British Medical J., 295 (1987), 567-569. |
[21] |
S. Z. Salahuddin et al., HLTV-III in symptom-free seronegative persons, Lancet, 2 (1984), 1418-1420. |
[22] |
H. R. Thieme, Semiflows generated by Lipschitz pertrubations of non-densely defined operators, Differential Integral Equations, 3 (1990), 1035-1066. |
[23] |
H. R. Thieme, Quasi-compact semigroups via bounded perturbation, in Advances in Mathematical Population Dynamics-Molecules, Cells and Man (eds. O. Arino, D. Axelrod and M. Kimmel), World Sci. Publ., (1997), 691-711. |
[24] |
H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math., 53 (1993), 1447-1479.
doi: 10.1137/0153068. |
[25] |
J.-Y. Yang, X.-Z. Li and M. Martcheva, Global stability of a DS-DI epidemic model with age of infection, J. Math. Anal. Appl., 385 (2012), 655-671.
doi: 10.1016/j.jmaa.2011.06.087. |
[26] |
J.-Y. Yang et al., Intrinsic transmission global dynamics of tuberculosis with age structure, Int. J. Biomath., 4 (2011), 329-346.
doi: 10.1142/S1793524511001222. |
[27] |
Z. Zhang and J. Peng, A SIRS epiemic model with infection-age dependence, J. Math. Anal. Appl., 331 (2007), 1396-1414.
doi: 10.1016/j.jmaa.2006.09.061. |
[28] |
Y. Zhou et al., Modeling and prediction of HIV in China: Transmission rates structured by infection ages, Math. Biosci. Eng., 5 (2008), 403-418.
doi: 10.3934/mbe.2008.5.403. |
show all references
References:
[1] |
À. Calsina, J. M. Palmada and J. Ripoll, Optimal latent period in a bacteriophage population model structured by infection-age, Math. Models Methods Appl. Sci., 21 (2011), 693-718.
doi: 10.1142/S0218202511005180. |
[2] |
C. Castillo-Chavez et al., Epidemiological models with age structure, proportionate mixing, and cross-immunity, J. Math. Bioi., 27 (1989), 233-258.
doi: 10.1007/BF00275810. |
[3] |
B. Buonomo and S. Rionero, On the Lyapunov stability for SIRS epidemic models with generalized nonlinear incidence rate, Appl. Math. Comput., 217 (2010), 4010-4016.
doi: 10.1016/j.amc.2010.10.007. |
[4] |
A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured epidemic model with external supplies, Nonlineaity, 24 (2011), 2891-2911.
doi: 10.1088/0951-7715/24/10/012. |
[5] |
Z. Feng, M. Iannelli and F. A. Milner, A two-strain tuberculosis model with age of infection, SIAM. J. Appl. Math., 62 (2002), 1634-1656.
doi: 10.1137/S003613990038205X. |
[6] |
D. F. Francis et al., Infection of chimpanzees with lymphadenopathy-associated virus, Lancet, 2 (1984), 1276-1277. |
[7] |
H. W. Hethcote and J. A. Yorke, Gonorrhea Transmission Dynamics and Control, Springer-Verlag, Berlin, 1984. |
[8] |
W. M. Hirsch, H. Hanisch and J.-P. Gabriel, Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior, Comm. Pure Appl. Math., 38 (1985), 733-753.
doi: 10.1002/cpa.3160380607. |
[9] |
J. M. Hyman and J. Li, Infection-age structured epidemic models with behavior change or treatment, J. Biol. Dyn., 1 (2007), 109-131.
doi: 10.1080/17513750601040383. |
[10] |
H. Inaba and H. Sekine, A mathematical model for Chagas disease with infection-age-dependent infectivity, Math. Biosci., 190 (2004), 39-69.
doi: 10.1016/j.mbs.2004.02.004. |
[11] |
A. Lahrouz et al., Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination, Appl. Math. Comput., 218 (2012), 6519-6525.
doi: 10.1016/j.amc.2011.12.024. |
[12] |
J. M. A. Lange et al., Persistent HIV antigenaemia and decline of HIV core antibodies associated with transition to AIDS, British Medical J., 293 (1986), 1459-1462. |
[13] |
J. Liu and Y. Zhou, Global stability of an SIRS epidemic model with trasport-related infection, Chaos Solitons Fractals, 40 (2009), 145-158.
doi: 10.1016/j.chaos.2007.07.047. |
[14] |
Z. Liu, P. Magal and S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z. Angew. Math. Phys., 62 (2011), 191-222.
doi: 10.1007/s00033-010-0088-x. |
[15] |
P. Magal, Compact attrators for time-periodic age-structured population models, Electron. J. Differntial Equations, 2001 (2001), 35 pp. |
[16] |
P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov fucntional and global asymptoticalc stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.
doi: 10.1080/00036810903208122. |
[17] |
P. Magal and X.-Q. Zhao, Global attractors in uniformly persistent dynamical systems, SIAM J. Mah. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173. |
[18] |
M. Martcheva and S. S. Pilyugin, The role of coinfection in multidisease dynamics, SIAM J. Appl. Math., 66 (2006), 843-872.
doi: 10.1137/040619272. |
[19] |
C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603-610.
doi: 10.3934/mbe.2009.6.603. |
[20] |
C. Pedersen et al., Temporal relation of antigenaemia and loss of antibodies to core core antigens to development of clinical disease in HIV infection, British Medical J., 295 (1987), 567-569. |
[21] |
S. Z. Salahuddin et al., HLTV-III in symptom-free seronegative persons, Lancet, 2 (1984), 1418-1420. |
[22] |
H. R. Thieme, Semiflows generated by Lipschitz pertrubations of non-densely defined operators, Differential Integral Equations, 3 (1990), 1035-1066. |
[23] |
H. R. Thieme, Quasi-compact semigroups via bounded perturbation, in Advances in Mathematical Population Dynamics-Molecules, Cells and Man (eds. O. Arino, D. Axelrod and M. Kimmel), World Sci. Publ., (1997), 691-711. |
[24] |
H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math., 53 (1993), 1447-1479.
doi: 10.1137/0153068. |
[25] |
J.-Y. Yang, X.-Z. Li and M. Martcheva, Global stability of a DS-DI epidemic model with age of infection, J. Math. Anal. Appl., 385 (2012), 655-671.
doi: 10.1016/j.jmaa.2011.06.087. |
[26] |
J.-Y. Yang et al., Intrinsic transmission global dynamics of tuberculosis with age structure, Int. J. Biomath., 4 (2011), 329-346.
doi: 10.1142/S1793524511001222. |
[27] |
Z. Zhang and J. Peng, A SIRS epiemic model with infection-age dependence, J. Math. Anal. Appl., 331 (2007), 1396-1414.
doi: 10.1016/j.jmaa.2006.09.061. |
[28] |
Y. Zhou et al., Modeling and prediction of HIV in China: Transmission rates structured by infection ages, Math. Biosci. Eng., 5 (2008), 403-418.
doi: 10.3934/mbe.2008.5.403. |
[1] |
Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643 |
[2] |
Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057 |
[3] |
Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002 |
[4] |
Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119 |
[5] |
Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859 |
[6] |
Carlota Rebelo, Alessandro Margheri, Nicolas Bacaër. Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1155-1170. doi: 10.3934/dcdsb.2014.19.1155 |
[7] |
Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060 |
[8] |
Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641 |
[9] |
Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026 |
[10] |
C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008 |
[11] |
Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186 |
[12] |
Jacek Banasiak, Rodrigue Yves M'pika Massoukou. A singularly perturbed age structured SIRS model with fast recovery. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2383-2399. doi: 10.3934/dcdsb.2014.19.2383 |
[13] |
Fred Brauer, Zhisheng Shuai, P. van den Driessche. Dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1335-1349. doi: 10.3934/mbe.2013.10.1335 |
[14] |
Jinliang Wang, Ran Zhang, Toshikazu Kuniya. A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2016, 13 (1) : 227-247. doi: 10.3934/mbe.2016.13.227 |
[15] |
Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525 |
[16] |
Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033 |
[17] |
Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with generalized nonlinear incidence and vaccination age. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 977-996. doi: 10.3934/dcdsb.2016.21.977 |
[18] |
Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1083-1106. doi: 10.3934/mbe.2015.12.1083 |
[19] |
Shanjing Ren. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1337-1360. doi: 10.3934/mbe.2017069 |
[20] |
C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819-841. doi: 10.3934/mbe.2012.9.819 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]